Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.4.316

Photocatalysis of TiO2/WO3 Composites Synthesized by Ball Milling  

Yu, Su-Yeol (Department of Applied Physics, Hannam University)
Nam, Chunghee (Department of Applied Physics, Hannam University)
Publication Information
Journal of Powder Materials / v.25, no.4, 2018 , pp. 316-321 More about this Journal
Abstract
Composites of P25 $TiO_2$ and hexagonal $WO_3$ nanorods are synthesized through ball-milling in order to study photocatalytic properties. Various composites of $TiO_2/WO_3$ are prepared by controlling the weight percentages (wt%) of $WO_3$, in the range of 1-30 wt%, and milling time to investigate the effects of the composition ratio on the photocatalytic properties. Scanning electron microscopy, x-ray diffraction, and transmission electron microscopy are performed to characterize the structure, shape and size of the synthesized composites of $TiO_2/WO_3$. Methylene blue is used as a test dye to analyze the photocatalytic properties of the synthesized composite material. The photocatalytic activity shows that the decomposition efficiency of the dye due to the photocatalytic effect is the highest in the $TiO_2/WO_3$ (3 wt%) composite, and the catalytic efficiency decreases sharply when the amount of $WO_3$ is further increased. As the amount of $WO_3$ added increases, dye-removal by adsorption occurs during centrifugation, instead of the decomposition of dyes by photocatalysts. Finally, $TiO_2/WO_3$ (3 wt%) composites are synthesized with various milling times. Experimental results show that the milling time has the best catalytic efficiency at 30 min, after which it gradually decreases. There is no significant change after 1 hour.
Keywords
Tungsten oxide; Titanium dioxide; Composite; Photocatalyst;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Lee, J. Kim, J. Lim, J. Lee, J. Park, S. Lee, J. Nam and Y.-W. Lee: J. Korean Soc. Water Environ., 31 (2015) 42.   DOI
2 P. Basnet and Y. Zhao: J. Mater. Chem. A, 2 (2014) 911.   DOI
3 C. Byrne, G. Subramanianc and S. C. Pillai: J. Environ. Chem. Eng., 6 (2017) 3531.
4 A. J. Haider, R. H. AL-Anbari, G. R. Kadhim and C. T. Salame: Energy Procedia, 119 (2017) 332.   DOI
5 M. R. D. Khaki, M. S. Shafeeyan, A. A. A. Raman and W. M. A. W. Daud: J. Mol. Liq., 258 (2018) 354.   DOI
6 T. Peng, S. Ray, S. S. Veeravalli, J. A. Lalman and F. Arefi-Khonsari: Mater. Res. Bull., 105 (2018) 104.   DOI
7 S. Yu and C. Nam: J. Korean Powder Metall. Inst., 24 (2017) 483.   DOI
8 C. Shifu, C. Lei, G. Shen and C. Gengyu: Powder Technol., 160 (2005) 198.   DOI
9 V. Navarro, O. Rodríguez de la Fuente, A. Mascaraque and J. M. Rojo: Phys. Rev. B, 78 (2008) 224107.   DOI
10 G. Zerjava, M. S. Arshad, P. Djinovic, J. Zavasnik and A. Pintar: Appl. Catal. B- Environ., 209 (2017) 273.   DOI
11 S. Begin-Colin, A. Gadalla, G. L. Caer, O. Humbert, F. Thomas, O. Barres, F. Villieras, L. F. Toma, G. Bertrand, O. Zahraa, M. Gallart, B. Honerlage and P. Gilliot: J. Phys. Chem. C, 113 (2009) 16589.   DOI
12 S. Indris, R. Amade, P. Heitjans, M. Finger, A. Haeger, D. Hesse, W. Gru1nert, A. Bo1rger and K. D. Becker: J. Phys. Chem. B, 109 (2005) 23274.   DOI
13 X. Fu, Y. Hu, Y. Yang, W. Liu and S. Chen: J. Hazard. Mater., 244 (2013) 102.
14 K. D. Kumar, G. P. Kumar and K. S. Reddy: Mater. Today Proc., 2 (2015) 3736.   DOI
15 Y. Li, X. Li, J. Li and J. Yin: Water Res., 40 (2006) 1119.   DOI