Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.5.424

Comparison of Properties with Different Sintering Process of 3Y-TZP/WC Composites  

Nam, Min-Soo (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
Choi, Jae-Hyung (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
Kim, Seongwon (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.29, no.5, 2022 , pp. 424-431 More about this Journal
Abstract
3Y-TZP ceramics obtained by doping 3 mol.% of Y2O3 to ZrO2 to stabilize the phase transition are widely used in the engineering ceramic industry due to their excellent mechanical properties such as high strength, fracture toughness, and wear resistance. An additional increase in mechanical properties is possible by manufacturing a composite in which a high-hardness material such as oxide or carbide is added to the 3Y-TZP matrix. In this study, composite powder was prepared by dispersing a designated percentage of WC in the 3Y-TZP matrix, and the results were compared after manufacturing the composite using the different processes of spark plasma sintering and HP. The difference between the densification behavior and porosity with the process mechanism was investigated. The correlation between the process conditions and phase formation was examined based on the crystalline phase formation behavior. Changes to the microstructure according to the process conditions were compared using field-emission scanning electron microscopy. The toughness-strengthening mechanism of the composite with densification and phase formation was also investigated.
Keywords
3Y-TZP; Tungsten carbide (WC); Ceramic Matrix Composite; Sintering processes; Mechanical properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Chevalier and L. Gremillard: J. Am. Ceram. Soc., 92 (2009) 1901.   DOI
2 P. Angerer, E. Neubauer, L. G. Yu and K. A. Khor: Int. J. Refract. Met. Hard Mater., 25 (2007) 280.   DOI
3 R. Yamanoglu, I. Daoud and E. A. Olevsky: Powder Metall., 61 (2018) 178.
4 M. N. Rahaman: Ceramic Processing and Sintering, (2nd ed)., Marcel Dekker, New York, (2003).
5 S. Lee: Ceramist, 22 (2019) 170.
6 J. Luo and R. Stevens: J. Am. Ceram. Soc., 82 (1999) 1922.   DOI
7 J. Chevalier, S. Deville, E. Munch, R. Jullian and F. Lair: Biomaterials, 25 (2004) 5539.   DOI
8 B. Cales and J. M. Drouin: J. Am. Ceram. Soc., 82 (1999) 2150.
9 M. Taya, S. Hayashi, A. S. Kobayashi and H. S. Yoon: J. Am. Ceram. Soc., 73 (1990) 1382.   DOI
10 T. Y. Cho, J. H. Yoon, S. H. Yoon, Y. K. Joo, W. H. Choi and Y. B. Son: Korean J. Met. Mater., 55 (2017) 227.   DOI
11 A. G. Evans: J. Am. Ceram. Soc., 73 (1990) 187.
12 M. Ruhle and A. G. Evans: Progr. Mater. Sci., 33 (1989) 85.   DOI
13 F. F. Lange: J. Am. Ceram. Soc., 69 (1986) 240.   DOI
14 W. H. Rhodes: J. Am. Ceram. Soc., 64 (1981) 19.   DOI
15 K. Tsukuma and M. Shimada: J. Mater. Sci., 20 (1985) 1178.   DOI
16 N. Unal, F. Kern, M. L. Ovecoglu and R. Gadowa: J. Eur. Ceram. Soc., 31 (2011) 2267.   DOI
17 A. Maji and G. Choubey: Mater. Today: Proceedings, 5 (2018) 7457.
18 J. H. Choi, J. Y. Choi and S. Kim: J. Powder Mater., 28 (2021) 381.   DOI
19 D. Liu, Y. Gao, J. Liu, K. Li, F. Liu and Y. Wang: J. Eur. Ceram. Soc., 36 (2016) 2051.   DOI
20 S. K. Yang, K. M. Bae, B. R. Cho and J. B. Kang: J. Korean Ceram. Soc., 42 (2005) 411.   DOI
21 D. J. Kim: Bull. Korean Ceram. Soc., 8 (1993) 157.
22 P. Duwez, F. Odell and F. H. Brown: J. Am. Ceram. Soc., 35 (1952) 107.   DOI