• Title/Summary/Keyword: Tsunami Event

Search Result 32, Processing Time 0.029 seconds

A Basic Study for Securing the Business Continuity of Local Governments in the Event of Earthquake and Tsunami (지진 및 지진해일 발생 시 지방자치단체의 업무연속성 확보를 위한 기초 연구)

  • Shin, Hojoon;Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.227-234
    • /
    • 2015
  • In this study, the theoretical review was carried out on the concepts regarding the continuity of operation plan and business continuity management plan, international standard ISO22301 and common required functions for disaster response, and the business continuity guideline of local governments in Japan and establishment cases were analyzed to draw matters to be reflected for establishing the business continuity plan of local governments according to the occurrence of earthquake and tsunami. In conclusion, the standard guideline of central government should be prepared for establishing the business continuity plan of local governments and the foundation to establish the plan smoothly based on such guideline should be provided. Also, the business continuity plan should be prepared based on the previous established safety management plans by reflecting the regional characteristics of local governments. And, in order to establish the business continuity plan that fits the region, proper investigations can be carried out to examine the characteristics of each organizations, resources, facilities and environments. Lastly, detailed scenario on the scale of earthquake and tsunami occurrence and damages is prepared to establish the business continuity plan of local governments and conditions for prompt countermeasures according to the scale.

Risk analysis of offshore terminals in the Caspian Sea

  • Mokhtari, Kambiz;Amanee, Jamshid
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-285
    • /
    • 2019
  • Nowadays in offshore industry there are emerging hazards with vague property such as act of terrorism, act of war, unforeseen natural disasters such as tsunami, etc. Therefore industry professionals such as offshore energy insurers, safety engineers and risk managers in order to determine the failure rates and frequencies for the potential hazards where there is no data available, they need to use an appropriate method to overcome this difficulty. Furthermore in conventional risk based analysis models such as when using a fault tree analysis, hazards with vague properties are normally waived and ignored. In other word in previous situations only a traditional probability based fault tree analysis could be implemented. To overcome this shortcoming fuzzy set theory is applied to fault tree analysis to combine the known and unknown data in which the pre-combined result will be determined under a fuzzy environment. This has been fulfilled by integration of a generic bow-tie based risk analysis model into the risk assessment phase of the Risk Management (RM) cycles as a backbone of the phase. For this reason Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) are used to analyse one of the significant risk factors associated in offshore terminals. This process will eventually help the insurers and risk managers in marine and offshore industries to investigate the potential hazards more in detail if there is vagueness. For this purpose a case study of offshore terminal while coinciding with the nature of the Caspian Sea was decided to be examined.

Review of Evaluation Method for Nuclear Power Plant Pipings under Beyond Design Basis Earthquake Condition (설계기준초과지진에 대한 원전 배관 평가 방법 검토)

  • Lee, Dae Young;Park, Heung Bae;Kim, Jin Weon;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.56-61
    • /
    • 2016
  • After Japanese Fukushima nuclear power plant accident caused by the beyond design basis earthquake and tsunami, it has turned to be a major challenge for nuclear safety. IAEA, US NRC and EU have provided new safety design standards for beyond design basis event, Domestic regulatory bodies have also enacted guidances for licensees and applicants on additional methods related to beyond design basis events. This paper describes several evaluation methods for applying to nuclear power plants piping for beyond design basis earthquake. As a results, energy method based on the absorbed energy on nuclear power plant, deterministic method following design code and theory, experience method considering past earthquake data and information and probabilistic methods similar to probabilistic risk assessment were reviewed.

Disaster Events Detection using Twitter Data

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • Twitter is a microblogging service that allows its user to share short messages called tweets with each other. All the tweets are visible on a public timeline. These tweets have the valuable geospatial component and particularly time critical events. In this paper, our interest is in the rapid detection of disaster events such as tsunami, tornadoes, forest fires, and earthquakes. We describe the detection system of disaster events and show the way to detect a target event from Twitter data. This research examines the three disasters during the same time period and compares Twitter activity and Internet news on Google. A significant result from this research is that emergency detection could begin using microblogging service.

INTERACTIVE GEOLOGICAL HAZARD MAPS USING GEOHZARDVIEW

  • Bandibas, Joel;Wakita, Koji;Katou, Hirokazu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.522-524
    • /
    • 2003
  • This paper presents the interactive method of showing geological hazard maps and other related information using the new GIS software developed at the Geological Survey of Japan. The main purpose of the software is to easily provide information about geological hazards to a wide range of users. The software incorporates spatial and a-spatial data to interactively present the time, locations and extent of occurrence of geological hazards and other related information. Queries for hazard information can be easily done. Simulations of the occurrence of a particular geological event like the spread of volcanic ash during major volcanic eruptions can also be easily shown.

  • PDF

Trend of recent earthquake activity of Korea and the monitoring system earthquake and tsunami in Korea (우리나라 최근 지진발생 현황과 지진 및 지진해일 감시체계)

  • 조영순
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.79-97
    • /
    • 2000
  • Trend of earthquake occurrence of Korea represents that the term from 1978 to 1982 may be called as "active period", the term from 1983 to 1991 is rather tranquil, and from 1992, the occurrence number is increasing greatly. Instrumental earthquake observation of Korea started in 1905 by Japan. It continued until 1943 and ceased then through social disorders such as the independence from Japan Empire and the civil war. After that the observation restarted in 1963 by the establishment the World Wide Standard Seismograph Network. And the fundamental earthquake observation period started in 1978 with the Hongsung earthquake event. KMA(Korea Meteorological Administration) has constructed and operated the 24-hour earthquake and tsunami monitoring system and it propels new construction project of the national seismographic network system. In the result of this project, KMA operates 27 seismic networks, 42 accelerator networks, seismic analyzing system, and sea level monitoring system now. It has the plan to enlarge these systems that 31 seismic networks and 75 accelerator networks until 2001.

  • PDF

A Study on the Air Travel Demand Forecasting using ARIMA-Intervention Model (Event Intervention이 일본, 중국 항공수요에 미치는 영향에 관한 연구)

  • Kim, Seon Tae;Kim, Min Su;Park, Sang Beom;Lee, Joon Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.77-89
    • /
    • 2013
  • The purpose of this study is to anticipate the air travel demands over the period of 164 months, from January 1997 to August 2010 using ARIMA-Intervention modeling on the selected sample data. The sample data is composed of the number of the passengers who in the domestic route for Jeju route. In the analysis work of this study, the past events which are assumed to have affected the demands for the air travel routes to Jeju in different periods were used as the intervention variables. The impacts of such variables were reflected in the presupposed demand. The intervention variables used in this study are, respectively, the World Cup event in 2002 (from May to June), 2003 SARS outbreak (from April to May), Tsunami in January 2005, and the influenza outbreak from October to December 2009. The result of the above mentioned analysis revealed that the negative intervention events, like a global outbreak of an epidemic did have negative impact on the air travel demands in a risk aversion by the users of the aviation services. However, in case of the negative intervention events in limited area, where there are possible substituting destinations for the tourists, the impact was positive in terms of the air travel demands for substituting destinations due to the rational expectation of the users as they searched for other options. Also in this study, it was discovered that there is not a binding correlation between a nation wide mega-event, such as the World Cup games in 2002, and the increased air travel demands over a short-term period.

PRESENT DAY EOPS AND SAMG - WHERE DO WE GO FROM HERE?

  • Vayssier, George
    • Nuclear Engineering and Technology
    • /
    • v.44 no.3
    • /
    • pp.225-236
    • /
    • 2012
  • The Fukushima-Daiichi accident shook the world, as a well-known plant design, the General Electric BWR Mark I, was heavily damaged in the tsunami, which followed the Great Japanese Earthquake of 11 March 2011. Plant safety functions were lost and, as both AC and DC failed, manoeuvrability of the plants at the site virtually came to a full stop. The traditional system of Emergency Operating Procedures (EOPs) and Severe Accident Management Guidelines (SAMG) failed to protect core and containment, and severe core damage resulted, followed by devastating hydrogen explosions and, finally, considerable radioactive releases. The root cause may not only have been that the design against tsunamis was incorrect, but that the defence against accidents in most power plants is based on traditional assumptions, such as Large Break LOCA as the limiting event, whereas there is no engineered design against severe accidents in most plants. Accidents beyond the licensed design basis have hardly been considered in the various designs, and if they were included, they often were not classified for their safety role, as most system safety classifications considered only design basis accidents. It is, hence, time to again consider the Design Basis Accident, and ask ourselves whether the time has not come to consider engineered safety functions to mitigate core damage accidents. Associated is a proper classification of those systems that do the job. Also associated are safety criteria, which so far are only related to 'public health and safety'; in reality, nuclear accidents cause few casualties, but create immense economical and societal effects-for which there are no criteria to be met. Severe accidents create an environment far surpassing the imagination of those who developed EOPs and SAMG, most of which was developed after Three Mile Island - an accident where all was still in place, except the insight in the event was lost. It requires fundamental changes in our present safety approach and safety thinking and, hence, also in our EOPs and SAMG, in order to prevent future 'Fukushimas'.

Thermal-hydraulic Analysis of Operator Action Time on Coping Strategy of LUHS Event for OPR1000 (OPR1000형 원전의 최종열제거원 상실사고 대처전략 및 운전원 조치 시간에 따른 열수력 거동 분석)

  • Song, Jun Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.121-127
    • /
    • 2020
  • Since the Fukushima nuclear accident in 2011, the public were concerned about the safety of Nuclear Power Plants (NPPs) in extreme natural disaster situations, such as earthquakes, flooding, heavy rain and tsunami, have been increasing around the world. Accordingly, the Stress Test was conducted in Europe, Japan, Russia, and other countries by reassessing the safety and response capabilities of NPPs in extreme natural disaster situations that exceed the design basis. The extreme natural disaster can put the NPPs in beyond-design-basis conditions such as the loss of the power system and the ultimate heat sink. The behaviors and capabilities of NPPs with losing their essential safety functions should be measured to find and supplement weak areas in hardware, procedures and coping strategies. The Loss of Ultimate Heat Sink (LUHS) accident assumes impairment of the essential service water system accompanying the failure of the component cooling water system. In such conditions, residual heat removal and cooling of safety-relevant components are not possible for a long period of time. It is therefore very important to establish coping strategies considering all available equipment to mitigate the consequence of the LUHS accident and keep the NPPs safe. In this study, thermal hydraulic behavior of the LUHS event was analyzed using RELAP5/Mod3.3 code. We also performed the sensitivity analysis to identify the effects of the operator recovery actions and operation strategy for charging pumps on the results of the LUHS accident.

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.