• Title/Summary/Keyword: Tryptophan metabolites

Search Result 34, Processing Time 0.021 seconds

Tryptophan Metabolite 3-Hydroxyanthranilic Acid Augments TRAIL-Induced Apoptosis in Activated T Cells (트립토판 대사체 3-hydroxyanthranilic acid의 TRAIL-유도 활성 T 세포 사멸 효과)

  • Seo, Su-Kil
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.316-321
    • /
    • 2011
  • Generation of tryptophan-derived metabolites by indoleamine 2,3-dioxygenase (IDO) is a potent immunoregulatory mechanism in T cell responses. However, the mechanism remains unclear. We showed that 3-hydroxyanthranilic acid (3-HAA), the most potent metabolite, selectively induced apoptosis in activated T cells, but not in resting T cells. This was not associated with cell cycle arrest. We found that TRAIL expression was selectively induced in activated T cells by treatment of 3-HAA. Blockade of the TRAIL: DR4/DR5 pathway significantly inhibited 3-HAA-mediated T cell death. Our data suggest that TRAIL-induced apoptosis is involved in the mechanism of 3-HAA-mediated T cell death.

Metabolomics Analysis of the Beef Samples with Different Meat Qualities and Tastes

  • Jeong, Jin Young;Kim, Minseok;Ji, Sang-Yun;Baek, Youl-Chang;Lee, Seul;Oh, Young Kyun;Reddy, Kondreddy Eswar;Seo, Hyun-Woo;Cho, Soohyun;Lee, Hyun-Jeong
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.924-937
    • /
    • 2020
  • The purpose of this study was to investigate the meat metabolite profiles related to differences in beef quality attributes (i.e., high-marbled and low-marbled groups) using nuclear magnetic resonance (NMR) spectroscopy. The beef of different marbling scores showed significant differences in water content and fat content. High-marbled meat had mainly higher taste compounds than low-marbled meat. Metabolite analysis showed differences between two marbling groups based on partial least square discriminant analysis (PLS-DA). Metabolites identified by PLS-DA, such as N,N-dimethylglycine, creatine, lactate, carnosine, carnitine, sn-glycero-3-phosphocholine, betaine, glycine, glucose, alanine, tryptophan, methionine, taurine, tyrosine, could be directly linked to marbling groups. Metabolites from variable importance in projection plots were identified and estimated high sensitivity as candidate markers for beef quality attributes. These potential markers were involved in beef taste-related pathways including carbohydrate and amino acid metabolism. Among these metabolites, carnosine, creatine, glucose, and lactate had significantly higher in high-marbled meat compared to low-marbled meat (p<0.05). Therefore, these results will provide an important understanding of the roles of taste-related metabolites in beef quality attributes. Our findings suggest that metabolomics analysis of taste compounds and meat quality may be a powerful method for the discovery of novel biomarkers underlying the quality of beef products.

Effects of Amino Acid Supplementation on Growth Performance for Weanling, Growing and Finishing Pigs

  • Li, D.F.;Guan, W.T.;Yu, H.M.;Kim, J.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Four feeding trials with 260 pigs were conducted to evaluate the effects of supplementing the diet with different amino acids on growth performance and blood metabolites for weanling, growing and finishing pigs. One hundred twenty weanling pigs (Exp. 1, BW 8 kg), eighty growing pigs (Exp. 2. BW 20 kg), thirty growing pigs (Exp. 3, BW 29 kg) and thirty finishing pigs (Exp. 4, BW 50 kg) were randomly allotted to different dietary treatments according to sex and body weight. Pigs weight and feed consumption were measured at initiation and termination of each trial with 4 weeks. At the end of trial, blood samples from three pigs selected in each pen (Exp. 1) and each pig (Exp. 2) were obtained to determine the level of blood urea nitrogen, glucose, insulin and cortisol in the serum. In Exp. 1, pigs fed diet supplemented both with lysine and methionine had the best feed conversion ratio (p < 0.05), but no significant differences (p > 0.05) were observed in ADG and ADFI. Pigs receiving control diet obtained the obtained the optimal ADG (p < 0.05), ADFI (p < 0.05) and F/G for the whole period. No differences were detected in serum glucose, insulin and cortisol concentrations. In Exp. 2, pigs receiving the control diet exhibited the lowest serum urea nitrogen (p < 0.05), ADG, F/G and serum insulin concentration increased linearly (p < 0.05) with the inclusion of lysine, methionine, threonine and tryptophan in diets. No significant differences (p > 0.05) were detected for glucose and cortisol content in pigs serum among dietary treatments. In Exp. 3 and 4, pigs growth rate increased linearly (p < 0.01), and feed conversion efficiency was also improves by addition of lysine, methionine, threonine and tryptophan. In conclusion, pigs fed diets supplemented with lysine, methionine, threonine and tryptophan together obtained optimal growth performance in growing and finishing periods.

Amino Acid, Amino Acid Metabolite, and GABA Content of Three Domestic Tomato Varieties

  • Ahn, Jun-Bae
    • Culinary science and hospitality research
    • /
    • v.22 no.6
    • /
    • pp.71-77
    • /
    • 2016
  • To determine the nutritional value of domestic tomatoes, the levels of amino acids, amino acid metabolites, and the bioactive compound ${\gamma}-aminobutyric-acid$ (GABA) were analyzed in three domestic tomato varieties (Rafito, Momotaro, and Medison). Eighteen free amino acids were found, and total free amino acid content was 3,810.21~4,594.56 mg/100 g (dry weight). L-glutamic acid (L-Glu) was the most abundant amino acid, ranging from 1,866.60 mg/100 g for Momotaro to 2,417.45 mg/100 g for Medison. The next most abundant amino acids were L-glutamine (L-Gln) and L-aspartic acid (L-Asp). The three tomato varieties had a good balance of all the essential amino acids except tryptophan. Total essential amino acid content was 274.26~472.71 mg/100 g (dry weight). The following amino acid metabolites were found: L-carnitine (L-Car), hydroxylysine (Hyl), o-phosphoethanolamine (o-Pea), phosphoserine (p-Ser), ${\beta}-alanine$ (${\beta}-Ala$), N-methyl-histidine (Me-His), ethanolamine (EtNH2),and L-citrulline(L-Cit). Large quantities of GABA were found in all three varieties: 666.95-868.48 mg/100g (dry weight). These results support the use of these tomato varieties as nutritious food materials.

LC-MS/MS-based Quantification of Ten Neurotransmitters in Rat Limbic System and Serum: Application to Chronic Unpredictable Mild Stress-Induced Depression Rats

  • Mingyan Ma;Qiangxiang Chen;Wen Cao;Yubo Zhou;Aijuan Yan;Yanru Zhu
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.91-103
    • /
    • 2023
  • As one of the most common mood disorders, numerous studies have shown depression is the main risk factor for non-suicidal self-harm. The pathogenesis of depression is complex, and a comprehensive and rapid measurement of monoamine neurotransmitters and their metabolites will be very helpful in understanding the pathogenesis of depression. Therefore, a rapid and sensitive underivatized liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous monitoring of the levels of ten neurotransmitters and their metabolites in rat serum and limbic system and successfully applied to quantify the changes of neurotransmitter levels in chronic unpredictable mild stress-induced rats. The analytes studied were mainly involved in tyrosine metabolism, tryptophan metabolism, and glutamate cycling pathways, which are important in the pathogenesis of depression. It had been verified the method was sensitive and effective, with satisfactory linearity, and met the requirements of biological sample determination. Levels of neurotransmitters in rat serum, hippocampus, amygdala, prefrontal cortex, striatum, and hypothalamus were determined via the method. The results showed serotonin, dopamine, norepinephrine, and their metabolites were decreased, glutamine was increased, and glutamate was disturbed in chronic unpredictable mild stress-induced depression rats. This method provides a new approach to studying the pathogenesis of depression and other neurological disorders.

Biosynthetic pathway of shikimate and aromatic amino acid and its metabolic engineering in plants (식물에서 shikimate 및 방향족 아미노산 생합성 경로와 이의 대사공학적 응용)

  • Lim, Sun-Hyung;Park, Sang Kyu;Ha, Sun-Hwa;Choi, Min Ji;Kim, Da-Hye;Lee, Jong-Yeol;Kim, Young-Mi
    • Journal of Plant Biotechnology
    • /
    • v.42 no.3
    • /
    • pp.135-153
    • /
    • 2015
  • The aromatic amino acids, which are composed of $\small{L}$-phenylalanine, $\small{L}$-tyrosine and $\small{L}$-tryptophan, are general components of protein synthesis as well as precursors for a wide range of secondary metabolites. These aromatic amino acids-derived compounds play important roles as ingredients of diverse phenolics including pigments and cell walls, and hormones like auxin and salicylic acid in plants. Moreover, they also serve as the natural products of alkaloids and glucosinolates, which have a high potential to promote human health and nutrition. The biosynthetic pathways of aromatic amino acids share a chorismate, the common intermediate, which is originated from shikimate pathway. Then, tryptophan is synthesized via anthranilate and the other phenylalanine and tyrosine are synthesized via prephenate, as intermediates. This review reports recent studies about all the enzymatic steps involved in aromatic amino acid biosynthetic pathways and their gene regulation on transcriptional/post-transcriptional levels. Furthermore, results of metabolic engineering are introduced as efforts to improve the production of the aromatic amino acids-derived secondary metabolites in plants.

Mass-Based Metabolomic Analysis of Lactobacillus sakei and Its Growth Media at Different Growth Phases

  • Lee, Sang Bong;Rhee, Young Kyoung;Gu, Eun-Ji;Kim, Dong-Wook;Jang, Gwang-Ju;Song, Seong-Hwa;Lee, Jae-In;Kim, Bo-Min;Lee, Hyeon-Jeong;Hong, Hee-Do;Cho, Chang-Won;Kim, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.925-932
    • /
    • 2017
  • Changes in the metabolite profiles of Lactobacillus sakei and its growth media, based on different culture times (0, 6, 12, and 24 h), were investigated using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS with partial least squares discriminant analysis, in order to understand the growth characteristics of this organism. Cell and media samples of L. sakei were significantly separated on PLS-DA score plots. Cell and media metabolites, including sugars, amino acids, and organic acids, were identified as major metabolites contributing to the difference among samples. The alteration of cell and media metabolites during cell growth was strongly associated with energy production. Glucose, fructose, carnitine, tryptophan, and malic acid in the growth media were used as primary energy sources during the initial growth stage, but after the exhaustion of these energy sources, L. sakei could utilize other sources such as trehalose, citric acid, and lysine in the cell. The change in the levels of these energy sources was inversely similar to the energy production, especially ATP. Based on these identified metabolites, the metabolomic pathway associated with energy production through lactic acid fermentation was proposed. Although further studies are required, these results suggest that MS-based metabolomic analysis might be a useful tool for understanding the growth characteristics of L. sakei, the most important bacterium associated with meat and vegetable fermentation, during growth.

Effects of dandelion (Taraxacum sp.,) supplements on lactation performance, antioxidative activity, and plasma metabolome in primiparous dairy cows

  • Yan, Li;Jie, Mei;Jiaqi, Wang;Hongyun, Liu
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.229-237
    • /
    • 2023
  • Objective: This study evaluated the effects of dandelion supplements on lactation performance, circulating antioxidative activity and plasma metabolomics in primiparous dairy cows. Methods: A total of 60 mid-lactation dairy cows (milk yield = 34.29±0.34 kg/d; days in milk = 151.72±2.36 days) were divided into 4 treatment groups randomly, comprising the addition of dandelion at 0, 100, 200, 400 g/d per head. The experiment lasted for 8 weeks with an extra 10 days' pre-feeding period. Milk and blood samples were collected, and plasma samples were selected to perform metabolomics analysis. Results: Supplementing 200 g/d of dandelion increased the yield of milk and lactose (p≤0.05). The milk somatic cell counts (p≤0.05) were lower in all dandelion groups than those in the control group. The activity of glutathione peroxidase (p≤0.05) and superoxide dismutase (p≤0.05) were increased and plasma malondialdehyde (p = 0.01) was decreased when cows were fed 200 g/d dandelion. Plasma metabolomics analysis showed that 23 hub differential metabolites were identified in the 200 g/d dandelion group. These metabolites such as ribose, glutamic acid, valine, and phenylalanine were enriched in D-glutamine and D-glutamate metabolism (p = 0.06, impact value = 1), phenylalanine, tyrosine, and tryptophan biosynthesis (p = 0.05, impact value = 0.5), and starch and sucrose metabolism (p = 0.21, impact value = 0.13). Moreover, correlation analysis showed that circulating ribose, mannose, and glutamic acid were positively related to milk yield. Conclusion: Dandelion supplementation could improve lactation performance and elevate the plasma carbohydrate and amino acids metabolism and antioxidative activity. Supplementation of 200 g/d dandelion is recommended for lactating dairy cows.

Mass Cultivation and Characterization of Multifunctional Bacillus velezensis GH1-13 (복합기능성 Bacillus velezensis GH1-13 균주의 대량배양 최적화 및 특성)

  • Park, Jun-Kyung;Kim, JuEun;Lee, Chul-Won;Song, JaeKyeong;Seo, Sun-Il;Bong, Ki-Moon;Kim, Dae-Hyuk;Kim, Pyoung Il
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • Bacillus genus are found abundantly in various sites and their secondary metabolites were used as potential agents in agriculture, notably plant growth promoting and bio-control. The objective of this study was to develop the culture conditions of GH1-13 strain including higher cell growth, stable endospore-forming and enhancement of potential agents which are related with plant growth promoting and phytopathogen suppression. The optimal carbon and nitrogen sources were determined by glucose and soy bean flour, respectively, then resulted in $7.5{\times}10^9cells/mL$, $6.8{\times}10^9\;endospore\;cells/mL$ and sporulation yield of 90% after 30 h cultivation in 500 L submerged fermenter at $37^{\circ}C$, pH 7.0. Cells and cell-free supernatant of GH1-13 strains showed the potent antifungal activity against phytopathogenic fungi of Colletotrichum gloeosporioides. It was also confirmed that indole-3-acetic acid (IAA) production of GH1-13 strain was greatly increased by addition of 0.3% tryptophan.

Effect of Exogenous Proline on Metabolic Response of Tetragenococcus halophilus under Salt Stress

  • He, Guiqiang;Wu, Chongde;Huang, Jun;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1681-1691
    • /
    • 2017
  • This study investigated the effect of proline addition on the salt tolerance of Tetragenococcus halophilus. Salt stress led to the accumulation of intracellular proline in T. halophilus. When 0.5 g/l proline was added to hyperhaline medium, the biomass increased 34.6% (12% NaCl) and 27.7% (18% NaCl) compared with the control (without proline addition), respectively. A metabolomic approach was employed to reveal the cellular metabolic responses and protective mechanisms of proline upon salt stress. The results showed that both the cellular membrane fatty acid composition and metabolite profiling responded by increasing unsaturated and cyclopropane fatty acid proportions, as well as accumulating some specific intracellular metabolites (environmental stress protector). Higher contents of intermediates involved in glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway were observed in the cells supplemented with proline. In addition, addition of proline resulted in increased concentrations of many organic osmolytes, including glutamate, alanine, citrulline, N-acetyl-tryptophan, and mannitol, which may be beneficial for osmotic homeostasis. Taken together, results in this study suggested that proline plays a protective role in improving the salt tolerance of T. halophilus by regulating the related metabolic pathways.