Browse > Article
http://dx.doi.org/10.4014/jmb.1702.02060

Effect of Exogenous Proline on Metabolic Response of Tetragenococcus halophilus under Salt Stress  

He, Guiqiang (College of Light Industry, Textile & Food Engineering, Sichuan University)
Wu, Chongde (College of Light Industry, Textile & Food Engineering, Sichuan University)
Huang, Jun (College of Light Industry, Textile & Food Engineering, Sichuan University)
Zhou, Rongqing (College of Light Industry, Textile & Food Engineering, Sichuan University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.9, 2017 , pp. 1681-1691 More about this Journal
Abstract
This study investigated the effect of proline addition on the salt tolerance of Tetragenococcus halophilus. Salt stress led to the accumulation of intracellular proline in T. halophilus. When 0.5 g/l proline was added to hyperhaline medium, the biomass increased 34.6% (12% NaCl) and 27.7% (18% NaCl) compared with the control (without proline addition), respectively. A metabolomic approach was employed to reveal the cellular metabolic responses and protective mechanisms of proline upon salt stress. The results showed that both the cellular membrane fatty acid composition and metabolite profiling responded by increasing unsaturated and cyclopropane fatty acid proportions, as well as accumulating some specific intracellular metabolites (environmental stress protector). Higher contents of intermediates involved in glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway were observed in the cells supplemented with proline. In addition, addition of proline resulted in increased concentrations of many organic osmolytes, including glutamate, alanine, citrulline, N-acetyl-tryptophan, and mannitol, which may be beneficial for osmotic homeostasis. Taken together, results in this study suggested that proline plays a protective role in improving the salt tolerance of T. halophilus by regulating the related metabolic pathways.
Keywords
Tetragenococcus halophilus; salt stress; metabolic response; proline; metabolomics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Beales N. 2004. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: a review. Compr. Rev. Food Sci. Food 3: 1-20.   DOI
2 Diamant S, Eliahu N, Rosenthal D, Goloubinoff P. 2001. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J. Biol. Chem. 276: 39586-39591.   DOI
3 Jehlička J, Oren A, Vítek P. 2012. Use of Raman spectroscopy for identification of compatible solutes in halophilic bacteria. Extremophiles 16: 507-514.   DOI
4 Slama I , Abdelly C , Bouchereau A, Flowers T , Savoure A. 2015. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115: 433-447.   DOI
5 Shivanand P, Mugeraya G. 2011. Halophilic bacteria and their compatible solutes-osmoregulation and potential applications. Curr. Sci. 100: 1516-1521.
6 Xu S, Zhou J, Liu L, Chen J. 2010. Proline enhances Torulopsis glabrata growth during hyperosmotic stress. Biotechnol. Bioproc. E. 15: 285-292.   DOI
7 Tian X, Wang Y, Chu J, Zhuang Y, Zhang S. 2016. Enhanced l-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis. Appl. Microbiol. Biot. 100: 2301-2310.   DOI
8 Morita Y, Nakamori S, Takagi H. 2002. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J. Biosci. Bioeng. 94: 390-394.   DOI
9 Denslow SA, Walls AA, Daub ME. 2005. Regulation of biosynthetic genes and antioxidant properties of vitamin B6 vitamers during plant defense responses. Physiol. Mol. Plant P. 66: 244-255.   DOI
10 Danon A, Miersch O, Felix G, Camp RG, Apel K. 2 005. Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J. 41: 68-80.
11 Xie Z , Duan L, Tian X, Wang B, Eneji A E, Li Z. 2008. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity. J. Plant Physiol. 165: 375-384.   DOI
12 Sheehan VM, Sleator RD, Fitzgerald GF, Hill C. 2006. Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl. Environ. Microb. 72: 2170-2177.   DOI
13 Pu X, An M, Han L, Zhang X. 2015. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotox. Environ. Safe 117: 96-106.   DOI
14 Zhang G , Xu SC, Hu QZ, Mao W H, Gong YM. 2014. Putrescine plays a positive role in salt-tolerance mechanisms by reducing oxidative damage in roots of vegetable soybean. J. Integr. Agr. 13: 349-357.   DOI
15 Hirakawa H, Hayashi M, Yamaguchi A, Nishino K. 2010. Indole enhances acid resistance in Escherichia coli. Microb. Pathogenesi. 49: 90-94.   DOI
16 Jayakannan M, Bose J, Babourina O , Rengel Z, Shabala S. 2015. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 76: 25-40.   DOI
17 Brill J, Hoffmann T, Bleisteiner M, Bremer E. 2011. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J. Bacteriol. 193: 5335-5346.   DOI
18 Zhang J , Wu CD, Du GC, Chen J. 2012. Enhanced a cid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol. Bioproc. E. 17: 283-289.   DOI
19 Wu R, Song X, Liu Q, Ma D, Xu F, Wang Q, Tang X, Wu J. 2016. Gene expression of Lactobacillus plantarum FS5-5 in response to salt stress. Ann. Microbiol. 66: 1181-1188.   DOI
20 Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−${\Delta}{\Delta}$CT method. Methods 25: 402-408.   DOI
21 Tymczyszyn EE, Gómez A, Disalvo EA. 2005. Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus. Arch. Biochem. Biophys. 443: 66-73.   DOI
22 Guillot A, Obis D, Mistou MY. 2000. Fatty acid membrane composition and activation of glycine-betaine transport in Lactococcus lactis subjected to osmotic stress. Int. J. Food Microbiol. 55: 47-51.   DOI
23 Mykytczuk N, Trevors J , Leduc L , Ferroni G . 2007. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. Prog. Biophys. Mol. Bio. 95: 60-82.   DOI
24 Cui RY, Zheng J, Wu CD, Zhou RQ. 2014. Effect of different halophilic microbial fermentation patterns on the volatile compound profiles and sensory properties of soy sauce moromi. Eur. Food Res. Technol. 239: 321-331.   DOI
25 Wu CD, Zhang J , Wang M, Du GC, Chen J. 2012. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biot. 39: 1031-1039.   DOI
26 Kempf B, Bremer E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170: 319-330.   DOI
27 Tanasupawat S, Thongsanit J, Okada S, Komagata K. 2002. Lactic acid bacteria isolated from soy sauce mash in Thailand. J. Gen. Appl. Microbiol. 48: 201-209.   DOI
28 Hanagata H, Shida O, Takagi H. 2003. Taxonomic homogeneity of a salt-tolerant lactic acid bacteria isolated from shoyu mash. J. Gen. Appl. Microbiol. 49: 95-100.   DOI
29 Wu C D, Liu C L, He GQ, Huang J, Zhou RQ. 2013. Characterization of a multiple-stress tolerance Tetragenococcus halophilus and application as starter culture in Chinese Horsebean-Chili-Paste manufacture for quality improvement. Food Sci. Technol. Res. 19: 855-864.   DOI
30 Roling W, Van Verseveld H. 1996. Characterization of Tetragenococcus halophila populations in indonesian soy mash (Kecap) fermentation. Appl. Environ. Microb. 62: 1203-1207.
31 Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J. 2011. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J. Agr. Food Chem. 59: 8401-8408.   DOI
32 Hahne H, Mäder U, Otto A, Bonn F, Steil L, Bremer E, et al. 2010. A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. J. Bacteriol. 192: 870-882.   DOI
33 Kilstrup M, Jacobsen S, Hammer K, Vogensen FK. 1997. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl. Environ. Microb. 63: 1826-1837.
34 Kusvuran S, Dasgan HY, Abak K. 2013. Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. Scientific World J. 2013: 253414.
35 Joghee NN, Jayaraman G. 2014. Metabolomic characterization of halophilic bacterial isolates reveals strains synthesizing rare diaminoacids under salt stress. Biochimie 102: 102-111.   DOI
36 He Z, Zhou A, Baidoo E, He Q, Joachimiak MP, Benke P, et al. 2010. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris Hildenborough to salt adaptation. Appl. Environ. Microb. 76: 1574-1586.   DOI
37 Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L. 2009. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt. Food Microbiol. 26: 720-727.   DOI
38 Kets E, Galinski EA, De Wit M, De Bont J, Heipieper HJ. 1996. Mannitol, a novel bacterial compatible solute in Pseudomonas putida S12. J. Bacteriol. 178: 6665-6670.   DOI
39 Held C, Sadowski G. 2016. Compatible solutes: thermodynamic properties relevant for effective protection against osmotic stress. Fluid. Phase. Equilibr. 407: 224-235.   DOI
40 Triadó X, Vila X, Galinski EA. 2011. Osmoadaptative accumulation of N$<{\varepsilon}$-acetyl-TEX>${\beta}$-lysine in green sulfur bacteria and Bacillus cereus CECT 148T. FEMS Microbiol. Lett. 318: 159-167.   DOI
41 Sand M, Rodrigues M, Gonzalez JM, Crecy-Lagard V, Santos H , Muller V, et al. 2015. Mannitol-1-phosphate dehydrogenases/phosphatases: a family of novel bifunctional enzymes for bacterial adaptation to osmotic stress. Environ. Microbiol. 17: 711-719.   DOI