• Title/Summary/Keyword: Trivalent chromium bath

Search Result 18, Processing Time 0.027 seconds

The Effect of Pulse Plating on the Current Efficiency in Trivalent Chromium Bath (3가크롬 도금욕에서 펄스도금조건이 전류효율에 미치는 영향)

  • 황경진;안종관;이만승;오영주
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.161-167
    • /
    • 2003
  • In order to investigate the effects of pulse plating conditions on the electrodeposition of trivalent chromium, electroplating experiments from bath with low concentration of trivalent chromium were performed. The variation of current efficiency of chromium electroplating with the electroplating conditions was explained. The maximum current efficiency of pulse plating is 6.4 times as high as that of direct plating at the same mean current density The nodular size increased with pulse plating time and the pulse frequency.

Effect of Electrolysis Conditions on Hard Chromium Deposition from Trivalent Chromium Bath (경질용 3가 크롬전착에 미치는 전해조건의 영향)

  • Kim, Dae-Young;Park, Sang-Eon;Kim, Man;Kwon, Sik-Chul;Choi, Ju-Won;Choi, Yong
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of the temperature, current density and deposit time on hard chromium deposition in trivalent chromium bath was investigated. Cathode current efficiency increased with increasing current density. Increasing bath temperature from $20^{\circ}C$ to $50^{\circ}C$, chromium deposits were produced in higher current density and the maximum current efficiency was increased. At the plating conditions of $40^{\circ}C$, $30A/dm\m^2$, the deposition thickness increased in proportion to increasing electrolysis time The rate is$ 90\mu\textrm{m}$/hrs. for 2 hours. Microhardness of chromium deposits increased with increasing bath temperature and decreasing current density, and it was constant with electrolysis time. All of bath conditions, microstructure of chromium deposits has nodular structure with some cracking pattern and nodule size increased with increasing deposit thickness.

Investigation of the Effect of Acidity and Polyethylene Glycol on Electrochemical Deposition of Trivalent Chromium Ions

  • Phuong, N.V.;Kwon, S.C.;Lee, J.Y.;Kim, M.;Lee, Y.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.47-48
    • /
    • 2011
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of solution stability, electroreduction of trivalent chromium ions and characterization of deposition layer. It was found that, the concentration of fraction chromium complexes in the trivalent chromium bath containing formic acid is strongly depended on pH value. PEG molecules were stable in trivalent chromium bath containing formic acid via studies on electrospray ionization mass spectrometry (ESI-MS) and UV-Vis. However, the presence of PEG molecules decreased the reductive current of hydrogen evolution, increasing of current efficiency higher about 10 % compared with solutions without PEG. Moreover, PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at a low speed. In this study, the effect of solution acidity was emphasized important, there, it controlled the formation of complexes in the solution, cathodic film (CF) during deposition, and properties of deposited layer. By electrochemical quartz crystal microbalance (EQCM), studies show that chromium electrodeposition occurs via the formation of intermediate complexes and adsorption on the cathode surface, which hinder the penetration of ions from bulk solution to the cathode surface.

  • PDF

The Effect of Additives on the Deposition Rate and the Surface Morphology of Trivalent Chromium Electrodeposits (3가 크롬도금의 전착속도 및 표면형상에 미치는 첨가제의 영향)

  • 예길촌;서경훈
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.1
    • /
    • pp.13-21
    • /
    • 2004
  • The deposition rate, the current efficiency and surface morphology of trivalent Cr deposits were investigated according to additives in sulfate bath and current density. The deposition rate of the Cr deposits plated from the formic acid complexed bath was noticeably higher than that of the glycine complexed bath. The current efficiency of the deposition from formic acid bath was higher than that of the glycine bath and increased with current density in the range of 20-50 A/d$\m^2$. The current efficiency of the deposition from the formic acid bath with boric acid buffer was higher than that of the bath with aluminum sulfate or boric acid-aluminum sulfate buffers. The nodular crystallite size of the Cr deposits increased with current density and the uniform and crack-free growth of the deposits for the aluminum sulfate was observed compared to the other buffers.

The Trend of Study of Echo-Friendly Hard Trivalent Chromium Deposition (환경친화성 경질 3가 크롬도금의 연구동향)

  • Kim, Man;Lee, Jong-Jae;Kim, Dae-Young;Park, Sang-Eon;Kwon, Sik-Chul
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.3
    • /
    • pp.179-184
    • /
    • 2004
  • Hard chromium coating technology using hexavalent chromium bath is widely used in various industries. Because of the serious health and environmental problems of hexavalent chromium, many attempts to alternate the hexavalent chromium plating have been made over 50 years. Trivalent chromium plating is one of the challengeable technologies to alternate hexavalent chromium plating. It is relatively none-toxic. Although some papers have described hard chromium coatings produced from trivalent chromium solution, it has limited the industrialization because of chemical and electrochemical problems of trivalent chromium ions. This paper introduces a number of factors for successful trivalent chromium plating, to give a some information about trivalent chromium process.

Effect of Potassium Formate, Glycine and Oxalic Acid in Sulfate Bath on Trivalent Chromium Deposition Composition and Current Efficiency (Potassium formate, Glycine, Oxalic acid가 황화물계 3가 크롬도금층의 조성과 전류효율에 미치는 영향)

  • Kim, Man;Kim, Dae-Young;Park, Sang-Eon;Kwon, Sik-Chul;Choi, Yong
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.2
    • /
    • pp.86-91
    • /
    • 2004
  • Effect of potassium formate, glycine and oxalic acid in a sulfate solution on the deposit composition and current efficiency of trivalent chromium plating was studied. The trivalent chromium layers prepared by solutions with potassium formate, glycine and oxalic acid contain a few carbon inside. The solutions containing potassium formate, glycine and oxalic acid are relatively stable with pH change. The solution with the potassium formate shows 6-30% current efficiency with current density, whereas, the solutions with oxalic acid and glycine show about 5% current efficiency, respectively. The improved current efficiency is related to enough supply of chromium ions to the electrode due to the increase of pH at the front of electrode.

Application of Small Angle Neutron Scattering to Determine Nano-size Cracks in Trivlent Chromium Layers (3가 크롬 박막 내의 극미세 결함 측정을 위한 중성자 소각 산란법의 적용)

  • Choi, Yong
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.3
    • /
    • pp.175-178
    • /
    • 2004
  • The size and number of nano-size defects of thin trivalent chrome layers were determined by small angle neutron scattering (SANS) without breaking the thin chrome layers. Most of defect size of the trivalent chromium prepared in this test conditions is in the range of about 40nm. The number of nano-size defects less than about 40nm of the trivalent chromium layer increases with plating voltage at constant current density From this study, SANS is proved as one of useful techniques to evaluate nano-size defects of thin film layer.

A Study of Trivalent Chromium Plating (3가 크롬도금에 관한 연구)

  • 양학희;김재원
    • Journal of Surface Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.188-194
    • /
    • 1983
  • The method of trivalent chromium plating has been studied. The relations between the mixing ratio of chromic chloride and DMF, and the corrosion resistance and throwing power of plated chromium have been investigated. As a result, the best result has been obtained, when the mole ratio of chromic chloride and DMF are 0.8 and 5.4M respectively, and it has been learned that the amounts of DMF added have particularly the delicate effects in chromium plating procedures. The results of measuring of pH and reduction potentials of chromium plating bath with addition of DMF showed that the functions of DMF have both the buffer actions for the solution and the complex formation of trivalent chromium.

  • PDF

Characterizations of Cr-P-PTFE composite coatings electroplated from trivalent chromium-based bath

  • Park, Jong-Kyu;Byoun, Young-Min;Seo, Sun-Kyo;Park, Su-Young;Choi, Sun-Woo
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.455-460
    • /
    • 2018
  • Chromium plating is a common surface treatment technique extensively applied in industry due its excellent properties which include substantial hardness, abrasion resistance, corrosion resistance, surface color, and luster. In this study, the effect of PTFE on corrosion behavior of Cr-P plating, low carbon steel substrates are electroplated in Cr(III) baths without and with PTFE. Trivalent chromium carbon plating was electroplated from trivalent chromium sulfate-based baths with different PTFE dispersion contents. The study focused on the microstructure, PTFE content, roughness, and corrosion resistance of the Cr-P-PTFE composite plating. Scanning electron microscopy and atomic force microscopy images showed a smoother plating and a decrease in the surface roughness of the electrodeposited. The results demonstrate that PTFE eliminates the cracks within plating by reducing internal stress. Therefore, the corrosion resistance of Cr-P-PTFE composite platings were better than that of Cr-P alloy platings.