Characterizations of Cr-P-PTFE composite coatings electroplated from trivalent chromium-based bath

  • Published : 2018.12.01

Abstract

Chromium plating is a common surface treatment technique extensively applied in industry due its excellent properties which include substantial hardness, abrasion resistance, corrosion resistance, surface color, and luster. In this study, the effect of PTFE on corrosion behavior of Cr-P plating, low carbon steel substrates are electroplated in Cr(III) baths without and with PTFE. Trivalent chromium carbon plating was electroplated from trivalent chromium sulfate-based baths with different PTFE dispersion contents. The study focused on the microstructure, PTFE content, roughness, and corrosion resistance of the Cr-P-PTFE composite plating. Scanning electron microscopy and atomic force microscopy images showed a smoother plating and a decrease in the surface roughness of the electrodeposited. The results demonstrate that PTFE eliminates the cracks within plating by reducing internal stress. Therefore, the corrosion resistance of Cr-P-PTFE composite platings were better than that of Cr-P alloy platings.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. A. Liang, J. Zhang, Surf. Coat. Technol. 206 (2012) 3616.
  2. N. V. Phuong, S. C. Kwon, J. Y. Lee, K. H. Lee, Surf. Coat. Technol. 206 (2012) 4349. https://doi.org/10.1016/j.surfcoat.2012.04.025
  3. A. Liang, L. Ni, Q. Liu, J. Zhang, Surf. Coat. Technol. 218 (2012) 23.
  4. S. Surviliene, V. Jasulaitiene, O. Nivinkiene, A. Cesuniene, Appl. Surf. Sci. 253 (2007) 6738. https://doi.org/10.1016/j.apsusc.2007.01.122
  5. S. Ghaziof, M.A. Golozar, K. Raeissi, J. Alloy. Compd. 496 (2010) 164. https://doi.org/10.1016/j.jallcom.2010.02.101
  6. R. Giovanardi, G. Orlando, Surf. Coat. Technol. 205 (2011) 3947. https://doi.org/10.1016/j.surfcoat.2011.02.027
  7. G. Saravanan, S. Mohan, Corros. Sci. 51 (2009) 197. https://doi.org/10.1016/j.corsci.2008.10.005
  8. Y. Song, D. Chin, Electrochim Acta. 48 (2002) 349. https://doi.org/10.1016/S0013-4686(02)00678-3
  9. V. Protsenko, V. Gordiienko, F. Danilov, Electrochem Commun. 17 (2012) 85. https://doi.org/10.1016/j.elecom.2012.02.013
  10. O. Safonova, L. Vykhodtseva, N. Polyakov, J. Swarbrick, M. Sikorad, P. Glatzel, V. Safonov, Electrochim Acta. 56 (2010) 145. https://doi.org/10.1016/j.electacta.2010.08.108
  11. V. Protsenko, F. Danilov, Electrochim Acta. 54 (2009) 5666. https://doi.org/10.1016/j.electacta.2009.04.072
  12. Z. Zeng, Y. Sun, J. Zhang, Electrochem Commun. 11 (2009) 331. https://doi.org/10.1016/j.elecom.2008.11.055
  13. S. Ghaziof, M. Golozar, K. Raeissi, J Alloys Compd. 496 (2010) 164. https://doi.org/10.1016/j.jallcom.2010.02.101
  14. Z. Zeng, L. Wang, A. Liang, J. Zhang, Electochim Acta. 52 (2006).
  15. A. Baral, R. Engelken, J Elechrochem Soc. 152 (2005) 504. https://doi.org/10.1149/1.1933688
  16. H. Sheu, C. Lu, K. Hou, M. Kuo, M. Ger, J Taiwan Inst Chem Eng. 48 (2015) 73. https://doi.org/10.1016/j.jtice.2014.10.017