• 제목/요약/키워드: Transparent conduction oxide

검색결과 31건 처리시간 0.022초

Atomic Layer Deposition for Display Applications

  • Park, Jin-Seong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.76.1-76.1
    • /
    • 2013
  • Atomic Layer Deposition (ALD) has remarkably developed in semiconductor and nano-structure applications since early 1990. Now, the advantages of ALD process are well-known as controlling atomic-level-thickness, manipulating atomic-level-composition control, and depositing impurity-free films uniformly. These unique properties may accelerate ALD related industries and applications in various functional thin film markets. On the other hand, one of big markets, Display industry, just starts to look at the potential to adopt ALD functional films in emerging display applications, such as transparent and flexible displays. Unlike conventional ALD process strategies (good quality films and stable precursors at high deposition processes), recently major display industries have suggested the following requirements: large area equipment, reasonable throughput, low temperature process, and cost-effective functional precursors. In this talk, it will be mentioned some demands of display industries for applying ALD processes and/or functional films, in terms of emerging display technologies. In fact, the AMOLED (active matrix organic light emitting diode) Television markets are just starting at early 2013. There are a few possibilities and needs to be developing for AMOLED, Flexible and transparent Display markets. Moreover, some basic results will be shown to specify ALD display applications, including transparent conduction oxide, oxide semiconductor, passivation and barrier films.

  • PDF

Fabrication of IGZO-based Oxide TFTs by Electron-assisted Sputtering Process

  • 윤영준;조성환;김창열;남상훈;이학민;오종석;김용환
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.273.2-273.2
    • /
    • 2014
  • Sputtering process has been widely used in Si-based semiconductor industry and it is also an ideal method to deposit transparent oxide materials for thin-film transistors (TFTs). The oxide films grown at low temperature by conventional RF sputtering process are typically amorphous state with low density including a large number of defects such as dangling bonds and oxygen vacancies. Those play a crucial role in the electron conduction in transparent electrode, while those are the origin of instability of semiconducting channel in oxide TFTs due to electron trapping. Therefore, post treatments such as high temperature annealing process have been commonly progressed to obtain high reliability and good stability. In this work, the scheme of electron-assisted RF sputtering process for high quality transparent oxide films was suggested. Through the additional electron supply into the plasma during sputtering process, the working pressure could be kept below $5{\times}10-4Torr$. Therefore, both the mean free path and the mobility of sputtered atoms were increased and the well ordered and the highly dense microstructure could be obtained compared to those of conventional sputtering condition. In this work, the physical properties of transparent oxide films such as conducting indium tin oxide and semiconducting indium gallium zinc oxide films grown by electron-assisted sputtering process will be discussed in detail. Those films showed the high conductivity and the high mobility without additional post annealing process. In addition, oxide TFT characteristics based on IGZO channel and ITO electrode will be shown.

  • PDF

RF-Sputtering 법을 이용한 ZnO:Al 박막의 후 열처리에 따른 특성 변화 (Effects of Post Annealing on the Properties of ZnO:Al Films Deposited by RF-Sputtering)

  • 이재형;이동진
    • 한국전기전자재료학회논문지
    • /
    • 제21권9호
    • /
    • pp.789-794
    • /
    • 2008
  • Zinc oxide (ZnO) has been widely studied for its practical applications such as transparent conduction electrodes for flat panel displays and solar cells. Especially, ZnO films show good chemical stability against hydrogen plasma, absence of toxicity, abundance in nature, and then suitable for photovoltaic applications. However, the fabrication process of thin film solar cells require a high substrate temperature and/or post heat treatment. Therefore, the layers have to withstand high temperatures, requiring an excellent stability without degrading their electronic and optical properties. In this paper, we investigated the stability of zinc oxide (ZnO) films doped with aluminum and hydrogen. Doped ZnO films were prepared by r.f. magnetron sputter and followed by heat treatment at different temperatures and for various times.

산화물반도체 트랜지스터의 전기적인 특성 (Semiconductor Engineering)

  • 오데레사
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.390-392
    • /
    • 2013
  • 본 논문에서는 투명디스플레이를 구현하기 위해 가장 주목받는 ZnO 계열의 산화물반도체의 특성에 대하여 관찰하였다. 알에프 마그네트론 스퍼터링에 의해 증착된 산화물 반도체의 광학적 특성으로부터 전기적인 신호 동작특성의 상호관계를 알아보았다. 박막내의 결합 혹은 불순물이 증가할수록 PL 특성은 장파장 특성이 우세하게 나타났다. SiOC 박막위에서는 에너지 밴드갭이 증가하면서 단파장 특성이 우세하게 나타났다. 트랜지스터의 특성은 기판의 의존도가 높게 나타났다.

  • PDF

Effect of dopants(Tri-valent, Penta-valent) on the electrical and optical properties of SnO2 based transparent electrodes

  • Kim, G.W.;Sung, C.H.;Seo, Y.J.;Park, K.Y.;Heo, S.N.;Lee, S.H.;Koo, B.H.
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.394-397
    • /
    • 2012
  • In this work, we studied the influence of the dopant elements concentration on the properties of SnO2 thin films deposited by pulsed laser deposition. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Hall effect measurement and UV-Vis studies were performed to characterize the deposited films. XRD results showed that the films had polycrystalline nature with tetragonal rutile structure. FE-SEM micrographs revealed that the as deposited films composed of dense microstructures with uniform grain size distribution. All the films show n-type conduction and the best transparent conductive oxide (TCO) performance was obtained on 6 wt% Sb2O5 doped SnO2 film prepared at pO2 of 60mtorr and Ts of 500 ℃. Its resitivity, optical transmittance, figure of merit are 7.8 × 10-4 Ω cm, 85% and 1.2 × 10-2 Ω-1, respectively.

Inverted structure perovskite solar cells: A theoretical study

  • Sahu, Anurag;Dixit, Ambesh
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1583-1591
    • /
    • 2018
  • We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.

Facile Modulation of Electrical Properties on Al doped ZnO by Hydrogen Peroxide Immersion Process at Room Temperature

  • Park, Hyun-Woo;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • 제26권3호
    • /
    • pp.43-46
    • /
    • 2017
  • Aluminum-doped ZnO (AZO) thin films were deposited by atomic layer deposition (ALD) with respect to the Al doping concentrations. In order to explain the chemical stability and electrical properties of the AZO thin films after hydrogen peroxide ($H_2O_2$) solution immersion treatment at room temperature, we investigated correlations between the electrical resistivity and the electronic structure, such as chemical bonding state, conduction band, band edge state below conduction band, and band alignment. Al-doped at ~ 10 at % showed not only a dramatic improvement of the electrical resistivity but also excellent chemical stability, both of which are strongly associated with changes of chemical bonding states and band edge states below the conduction band.

Cu2ZnSn(S,Se)4 (CZTSSe) 박막 태양전지 적용을 위한 마그네트론 스퍼터링으로 증착된 AZO/Ag/AZO 투명전극의 특성 (Characteristics of an AZO/Ag/AZO Transparent Conducting Electrode Fabricated by Magnetron Sputtering for Application in Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells)

  • 이동민;장준성;김지훈;이인재;이병훈;조은애;김진혁
    • 한국재료학회지
    • /
    • 제30권6호
    • /
    • pp.285-291
    • /
    • 2020
  • Recent advances in technology using ultra-thin noble metal film in oxide/metal/oxide structures have attracted attention because this material is a promising alternative to meet the needs of transparent conduction electrodes (TCE). AZO/Ag/AZO multilayer films are prepared by magnetron sputtering for Cu2ZnSn(S,Se)4 (CZTSSe) of kesterite solar cells. It is shown that the electrical and optical properties of the AZO/Ag/AZO multilayer films can be improved by the very low resistivity and surface plasmon effects due to the deposition of different thicknesses of Ag layer between oxide layers fixed at AZO 30 nm. The AZO/Ag/AZO multilayer films of Ag 15 nm show high mobility of 26.4 ㎠/Vs and low resistivity and sheet resistance of 3.5810-5 Ωcm and 5.0 Ω/sq. Also, the AZO/Ag (15 nm)/AZO multilayer film shows relatively high transmittance of more than 65 % in the visible region. Through this, we fabricated CZTSSe thin film solar cells with 7.51 % efficiency by improving the short-circuit current density and fill factor to 27.7 mV/㎠ and 62 %, respectively.

오존에 의한 전구체와 혼입제의 화학적 활성화 (Chemical activation of precursor and dopant by ozone)

  • 이상운;윤천호;박정일;박광자
    • 한국진공학회지
    • /
    • 제8권3A호
    • /
    • pp.201-206
    • /
    • 1999
  • Transparent and conduction tin oxide films have been deposited on glass substrates employing the low pressure chemical vapor deposition technique. Tetramethyltin, 1, 1, 1, 2-tetrafluoroethane, and pure oxygen or ozone-containing oxygen were used as the precursor, dopant and oxidant, respectively. In order to examine the role of ozone in the low pressure chemical vapor deposition of tin oxide films, deposition rate, and electrical and optical properties of tin oxide films deposited using ozone-containing oxygen were compared with those using pure oxygen. Tetramethyltin and 1, 1, 1, 2-tetrafluoroethane were chemically activated by thermally initiated decomposition of ozone. Using ozone-containing oxygen under otherwise identical deposition conditions, we succeeded in preparing tin oxide films f better quality at higher deposition rate.

  • PDF

RF Sputtered $SnO_2$, Sn-Doped $In_2O_3$ and Ce-Doped $TiO_2$ Films as Transparent Counter Electrodes for Electrochromic Window

  • 김영일;윤주병;최진호;Guy Campet;Didier Camino;Josik Portier;Jean Salardenne
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.107-109
    • /
    • 1998
  • The $SnO_2$, Sn-doped $In_2O+3\; and \;Ce-doped\; TiO_2$ films have been prepared by RF sputtering method, and their opto-electrochemical properties were investigated in view of the applicability as counter electrodes in the electrochromic window system. These oxide films could reversibly intercalate $Li^+$ ions owing to the nanocrystalline texture, but remained colorless and transparent. The high transmittance of the lithiated films could be attributed to the prevalence of the $Sn^{4+}/Sn^{2+}\; and\; Ce^{4+}/Ce^{3+}$ redox couples having 5s and 6s character conduction bands, respectively. For the Ce-doped $TiO_2$ film, $(TiO_2)_{1-x}(CeO_2)_x$, an optimized electrochemical reversibility was found in the film with the composition of x = 0.1.