• 제목/요약/키워드: Transmitted Forces

검색결과 113건 처리시간 0.04초

면진장치를 적용한 컴퓨터실 바닥의 지진응답해석 (Seismic Response Analysis of Computer Floors Using Base Isolation System)

  • 이경진
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.424-431
    • /
    • 2000
  • After the Kobe earthquake(1995) in Japan, the Izmit earthquake(1997) in Turkey and the Chi-chi earthquake(1999) in Taiwan, the small-to-medium-sized earthquakes occurred in the Koreans peninsula and this shows the fact that Korea is not located in the safety zone of earthquake. The main concept of base isolation system is to reduce the member forces by decreasing the earthquake forces transmitted to superstructure instead of the conventional techniques of strengthening the structural members. This study investigates the effect of seismic response attenuation of computer floors using base isolation systems

  • PDF

햅틱인터페이스를 이용한 나노스케일 가상표면에서의 나노리소그래피 (Nanolithography Using Haptic Interface in a Nanoscale Virtual Surface)

  • 김성관
    • 한국표면공학회지
    • /
    • 제39권2호
    • /
    • pp.64-69
    • /
    • 2006
  • Nanoscale task such as nanolithography and nanoindenting is a challenging work that is beyond the capabilities of human sensing and precision. Since surface forces and intermolecular forces dominate over gravitational and other more intuitive forces of the macro world at the nanoscale, a user is not familiar with these novel nanoforce effects. In order to overcome this scaling barrier, haptic interfaces that consist of visual and force feedback at the macro world have been used with an Atomic Force Microscope (AFM) as a manipulator at the nanoscale. In this paper, a nanoscale virtual coupling (NSVC) concept is introduced and the relationship between performance and impedance scaling factors of velocity (or position) and force are explicitly represented. Experiments have been performed for nanoindenting and nanolithography with different materials in the nanoscale virtual surface. The interaction forces (non contact and contact nanoforces) between the AFM tip and the nano sample are transmitted to the operator through the haptic interface.

Optimized Location Selection of Active Mounting System Applied to 1D Beam Structure

  • Kim, Byeongil
    • 한국산업융합학회 논문집
    • /
    • 제25권4_1호
    • /
    • pp.505-511
    • /
    • 2022
  • The objective of this article is finding optimized locations of active mounts applied to 6-DOF beam structure with two active paths. When sinusoidal excitation forces are applied to the beam structure, secondary forces from two active mounts which can minimize (ideally becoming zero) transmitted forces are calculated mathematically and the vibration attenuation performance is validated through computer simulations. When the force applied to two active mounts are relatively low, those specific locations are considered as optimized location of active mounting system. As the location of mount changes, amplitude and phase of secondary forces in each path are analyzed with 3D plots. Based on the simulation results, a criterion for selecting mounting location is suggested and it would be very useful for selecting actuators for active mounts appropriately.

간접 힘 측정 방법과 가상 역행렬을 이용한 힘 예측 (Forces Prediction by Indirect Force Measurement and Pseudo-inverse Technique)

  • 안병하;심재술
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.43-50
    • /
    • 2002
  • In the design of structure, the forces acting on tai structure are key parameter fur noise and vibration control. However, in the complex structure, the forces at the injection point on the structure cannot be measured directly. So, it is necessary to find out Indirect force evaluation method. In this paper, forces have been measured with In-situ vibration responses and system information. And, three existing techniques of indirect force measurement, vita. direct inverse. principal component analysis and regularization have been compared. This paper shows that multi-vibration responses are essential for talc precise estimation of the forces. To check these conditions, rotary compressor is adopted as test sample, because it is very difficult to measure the injection forces from internal excitation to shell. It alas also been obtained that relatively higher force is transmitted through three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation with curvature shell and plate.

Indirect force 측정 방법과 Pseudo-역행렬을 이용한 정밀한 Force 예측 (Precise Forces Prediction by Indirect Force Measurement and Pseudo-inverse Technique)

  • 심재술;안병하;하종훈;정현출
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.564-567
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection point on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In this paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those conditions, Rotary compressor is adopted as test sample, because it is very difficult to measure the injection forces from internal excitation to shell. It has also been obtained that relatively higher force is transmitted though three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation with curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

면역.유전 알고리듬을 이용한 로터 베어링시스템의 다목적 형상최적설계 (Multi-Objective Optimum Shape Design of Rotor-Bearing System with Dynamic Constraints Using Immune-Genetic Algorithm)

  • 최병근;양보석
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1661-1672
    • /
    • 2000
  • An immune system has powerful abilities such as memory, recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this pap er, the combined optimization algorithm (Immune- Genetic Algorithm: IGA) is proposed for multi-optimization problems by introducing the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The optimizing ability of the proposed combined algorithm is identified by comparing the result of optimization with simple genetic algorithm for two dimensional multi-peak function which have many local optimums. Also the new combined algorithm is applied to minimize the total weight of the shaft and the transmitted forces at the bearings. The inner diameter oil the shaft and the bearing stiffness are chosen as the design variables. The dynamic characteristics are determined by applying the generalized FEM. The results show that the combined algorithm and reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic conatriants.

링크모션 메커니즘의 기구학적 분석 및 다이나믹 발란싱 테크닉 (Kinematic Analysis and Dynamic Balancing Technique in a Link-Motion Mechanism)

  • 서진성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.498-502
    • /
    • 2004
  • In a link-motion mechanism, numerous links are interconnected and each link executes a constrained motion at a high speed. Due to the complicated constrained motions of the constituent links, dynamic unbalance forces and moments are generated and transmitted to the main frame. Therefore unwanted vibration is produced. This degrades productivity and precise work. Based on constrained multi-body dynamics, the kinematic analysis is carried out to enable design changes to be made. This will provide the fundamental information for significantly reducing dynamic unbalance forces and moments which are transmitted to the main frame. In this work, a link-motion punch press is selected as an example of a link-motion mechanism. To calculate the mass and inertia properties of every link comprising a link-motion punch press, 3-dimensional CAD software is utilized. The main issue in this work is to eliminate the first-order unbalance force and moment in a link-motion punch press. The mass, moment of inertia link length, location of the mass center in each link have a great impact on the degree of dynamic balancing which can be achieved maximally. Achieving good dynamic balancing in a link motion punch press is quite essential fur reliable operation at high speed.

  • PDF

Modified Twin Blocks에 의한 성장기 아동의 II급 부정교합의 치료증례 (A CASE REPORT ON TREATMENT OF CLASS II MALOCCLUSION WITH TWIN BLOCKS IN GROWING CHILD)

  • 양규호;박재홍
    • 대한소아치과학회지
    • /
    • 제21권2호
    • /
    • pp.577-585
    • /
    • 1994
  • The Twin Blocks technique was developed by Dr. William Clark of Scotland during the early 1980's. Twin Blocks are an uncomplicated system that incorporates the use of upper and lower bite blocks. These blocks reposition the mandible and redirect occlusal forces to achieve rapid correction of malocclusions. They are also comfortable and the patients wear them full-time-inducing eating time. Occlusal forces transmitted through the dentition provide a constant proprioceptive stimulus to influence the rate of growth and the trabecular structure of the supporting bone. The features of Twin Blocks mean easier and quicker treatment. The occlusal inclined plane is the fundamental functional mechanism of the natural dentition. Twin blocks are bite blocks that effectively modify the occlusal inclined plane to induce favorably directed occlusal forces by causing a functional mandibular displacement. Upper and lower bite blocks interlock at a $45^{\circ}$ angle and are designed for full-time wear to take advantage of all functional forces applied to the dentition including the forces of mastication. The patients who were treated with modified Twin Blocks, and following results were observed: 1. Large overjet and deep overbite were corrected. 2. Class II molar relationship was changed into Class I. 3. Labial inclination of upper incisors was corrected by adjustment of labial bow of upper bite block. 4. The profiles of two patients were improved by anterior displacement of mandible.

  • PDF

Linear Motor의 열변형 오차해석 및 실험 (Thermal Deformation Error Analysis and Experiment of a Linear Motor)

  • 최우혁;민경석;오준모;최우천;홍대희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.286-289
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection pomt on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In thls paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those cond~tions, Rotary compressor is adopted as test sample, because it is very difficult to measurc the injection forces from internal excitat~on to shell. It has also been obtained that relatively higher force IS transmitted through three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation wlth curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

고속철도 교량의 구조 시스템 변화를 고려한 교량상 장대레일의 응력 해석 (Analysis of Rail Stress on Diversity of Railway Bridge Sustem)

  • 강재윤;김병석;곽종원;진원종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3160-3165
    • /
    • 2011
  • The track and bridge interaction should be considered for the safety check of railway bridge design as the longitudinal forces transmitted to rail and bridge are changed by longitudinal stiffness of bridge system. The longitudinal stiffness of bridge structures is determined by the magnitude of the ballast resistance, the expansion length of superstructure, and longitudinal stiffness of substructure including pier and foundations. In this study, the main factors affect on the longitudinal rail forces are discussed and the computational parametric analysis of rail forces considering rail-bridge interactions. And the required range of stiffness of sub-structures and span length for the assurance of safety of CWR(continuous welded rail) track is suggested.

  • PDF