• Title/Summary/Keyword: Transmission Matrix

Search Result 600, Processing Time 0.023 seconds

A Depth-based Disocclusion Filling Method for Virtual Viewpoint Image Synthesis (가상 시점 영상 합성을 위한 깊이 기반 가려짐 영역 메움법)

  • Ahn, Il-Koo;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.48-60
    • /
    • 2011
  • Nowadays, the 3D community is actively researching on 3D imaging and free-viewpoint video (FVV). The free-viewpoint rendering in multi-view video, virtually move through the scenes in order to create different viewpoints, has become a popular topic in 3D research that can lead to various applications. However, there are restrictions of cost-effectiveness and occupying large bandwidth in video transmission. An alternative to solve this problem is to generate virtual views using a single texture image and a corresponding depth image. A critical issue on generating virtual views is that the regions occluded by the foreground (FG) objects in the original views may become visible in the synthesized views. Filling this disocclusions (holes) in a visually plausible manner determines the quality of synthesis results. In this paper, a new approach for handling disocclusions using depth based inpainting algorithm in synthesized views is presented. Patch based non-parametric texture synthesis which shows excellent performance has two critical elements: determining where to fill first and determining what patch to be copied. In this work, a noise-robust filling priority using the structure tensor of Hessian matrix is proposed. Moreover, a patch matching algorithm excluding foreground region using depth map and considering epipolar line is proposed. Superiority of the proposed method over the existing methods is proved by comparing the experimental results.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.

Wine quality grading by near infrared spectroscopy.

  • Dambergs, Robert G.;Kambouris, Ambrosias;Schumacher, Nathan;Francis, I. Leigh;Esler, Michael B.;Gishen, Mark
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1253-1253
    • /
    • 2001
  • The ability to accurately assess wine quality is important during the wine making process, particularly when allocating batches of wines to styles determined by consumer requirements. Grape payments are often determined by the quality category of the wine that is produced from them. Wine quality, in terms of sensory characteristics, is normally a subjective measure, performed by experienced winemakers, wine competition judges or winetasting panellists. By nature, such assessments can be biased by individual preferences and may be subject to day-to-day variation. Taste and aroma compounds are often present in concentrations below the detection limit of near infrared (NIR) spectroscopy but the more abundant organic compounds offer potential for objective quality grading by this technique. Samples were drawn from one of Australia's major wine shows and from BRL Hardy's post-vintage wine quality allocation tastings. The samples were scanned in transmission mode with a FOSS NIR Systems 6500, over the wavelength range 400-2500 ㎚. Data analysis was performed with the Vision chemometrics package. With samples from the allocation tastings, the best correlations between NIR spectra and tasting data were obtained with dry red wines. These calibrations used loadings in the wavelengths related to anthocyanins, ethanol and possibly tannins. Anthocyanins are a group of compounds responsible for colour in red wines - restricting the wavelengths to those relating to anthocyanins produced calibrations of similar accuracy to those using the full wavelength range. This was particularly marked with Merlot, a variety that tends to have relatively lower anthocyanin levels than Cabernet Sauvignon and Shiraz. For dry white wines, calibrations appeared to be more dependent on ethanol characteristics of the spectrum, implying that quality correlated with fruit maturity. The correlations between NIR spectra and sensory data obtained using the wine show samples were less significant in general. This may be related to the fact that within most classes in the show, the samples may span vintages, glowing areas and winemaking styles, even though they may be made from only one grape variety. For dry red wines, the best calibrations were obtained with a class of Pinot Noir - a variety that tends to be produced in limited areas in Australia and would represent the least matrix variation. Good correlations were obtained with a tawny port class - these wines are sweet, fortified wines, that are aged for long periods in wooden barrels. During the ageing process Maillard browning compounds are formed and the water is lost through the barrels in preference to ethanol, producing “concentrated” darkly coloured wines with high alcohol content. These calibrations indicated heaviest loadings in the water regions of the spectrum, suggesting that “concentration” of the wines was important, whilst the visible and alcohol regions of the spectrum also featured as important factors. NIR calibrations based on sensory scores will always be difficult to obtain due to variation between individual winetasters. Nevertheless, these results warrant further investigation and may provide valuable Insight into the main parameters affecting wine quality.

  • PDF

Broadband Multi-Layered Radome for High-Power Applications (고출력 환경에 적용 가능한 광대역 다층 구조 레이돔)

  • Lee, Ki Wook;Lee, Kyung Won;Moon, Bang Kwi;Choi, Samyeul;Lee, Wangyong;Yoon, Young Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • In this paper, we developed a broadband multi-layered radome applicable for high-power applications. In this regard, we presented the wave propagation characteristics of the broadband multi-layered radome with the ABCD matrix and obtained the optimal thickness and the material constant for each layer by an optimization algorithm called "particle swarm optimization," implemented by a commercial numerical modeling tool. Further, we redesigned it in view of mechanical properties to reflect environmental conditions such as wind, snow, and ice. The power transmission property was reanalyzed based on the recalculated data of each layer's thickness to consider the limitations of the fabrication of a large structure. Under the condition of a peak electric field strength that is 10 dB above the critical electric field strength in air breakdown, we analyzed the air breakdown by radio frequency(RF) in the designed radome using the commercial full-wave electromagnetic tool. The radome was manufactured and tested by continuous wave(CW) RF small signal and large signal in an anechoic chamber. The test results showed good agreement with those attained by simulation.

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays (내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유)

  • Jung, Min-Hye;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.518-525
    • /
    • 2007
  • The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

Distributed Alamouti Space Time Block Coding Based On Cooperative Relay System (협동 중계 시스템을 이용한 분산 Alamouti 시공간 블록 부호)

  • Song, Wei;Cho, Kye-Mun;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.9
    • /
    • pp.16-23
    • /
    • 2009
  • In this paper, we propose a new distributed Alamouti space-time block coding scheme using cooperative relay system composed of one source node, three relay nodes and one destination node. The source node is assumed to be equipped with two antennas which respectively use a 2-beam array to communicate with two nodes selected from the three relay nodes. During the first time slot, the two signals which respectively were transmitted by one antenna at the source, are selected by one relay node, added, amplified, and forwarded to the destination. During the second time slot, the other two relay nodes implement the conjugate and minusconjugate operations to the two received signals, respectively, each in turn is amplified and forwarded to the destination node. This transmission scheme represents a new distributed Alamouti space-time block code that can be constructed at the relay-destination channel. Through an equivalent matrix expression of symbols, we analyze the performance of this proposed space-time block code in terms of the chernoff upper bound pairwise error probability (PEP). In addition, we evaluate the effect of the coefficient $\alpha$ ($0{\leq}{\alpha}{\leq}1$) determined by power allocation between the two antennas at the source on the received signal performance. Through computer simulation, we show that the received signals at the three relays have same variance only when the value of $\alpha$ is equal to $\frac{2}{3}$, as a consequence, a better performance is obtained at the destination. These analysis results show that the proposed scheme outperforms conventional proposed schemes in terms of diversity gain, PEP and the complexity of relay nodes.

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.

Connection between Fourier of Signal Processing and Shannon of 5G SmartPhone (5G 스마트폰의 샤논과 신호처리의 푸리에의 표본화에서 만남)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.69-78
    • /
    • 2017
  • Shannon of the 5G smartphone and Fourier of the signal processing meet in the sampling theorem (2 times the highest frequency 1). In this paper, the initial Shannon Theorem finds the Shannon capacity at the point-to-point, but the 5G shows on the Relay channel that the technology has evolved into Multi Point MIMO. Fourier transforms are signal processing with fixed parameters. We analyzed the performance by proposing a 2N-1 multivariate Fourier-Jacket transform in the multimedia age. In this study, the authors tackle this signal processing complexity issue by proposing a Jacket-based fast method for reducing the precoding/decoding complexity in terms of time computation. Jacket transforms have shown to find applications in signal processing and coding theory. Jacket transforms are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^{\dot{+}}=nl_n$, where $A^{\dot{+}}$ is the transpose matrix of the element-wise inverse of A, that is, $A^{\dot{+}}=(a^{-1}_{kj})$, which generalise Hadamard transforms and centre weighted Hadamard transforms. In particular, exploiting the Jacket transform properties, the authors propose a new eigenvalue decomposition (EVD) method with application in precoding and decoding of distributive multi-input multi-output channels in relay-based DF cooperative wireless networks in which the transmission is based on using single-symbol decodable space-time block codes. The authors show that the proposed Jacket-based method of EVD has significant reduction in its computational time as compared to the conventional-based EVD method. Performance in terms of computational time reduction is evaluated quantitatively through mathematical analysis and numerical results.

Fabrication of the poly (methyl methacrylate)/clay (modified with fluorinated surfactant) nanocomposites using supercritical fluid process (초임계 공정을 이용한 poly(methyl methacrylate)/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.231-237
    • /
    • 2014
  • The supercritical fluids (SCFs) have been widely used for material synthesis and processing due to their remarkable properties including low viscosity, high diffusivity and low surface tension. Carbon dioxide is one of the suitable solvents in SCFs processes in terms of its advantages such as easy processibility (with low critical temperature and pressure), inexpensive, nonflammable, nontoxic, and readily available. However, it has generally low solubility for high molecular weight polymers with the exception of fluoropolymers and siloxane polymers. Therefore, hydrocarbon solvents and hydrochlorofluorocarbons have been used for various SCFs process by its high solubility for high molecular weight polymers. In this report, a PMMA/clay nanocomposites were fabricated by using supercritical fluid process. The $Na^+$-MMT(montmorillonites)was modified by a fluorinated surfactant which is able to enhance compatibility with the chlorodifluoromethane(HCFC-22) and thus, improve dispersability of the clay in the polymer matrix. The PMMA/fluorinated surfactant modified clay nanocomposite shows enhanced mechanical and thermal properties which characterized by X-raydiffraction(XRD), Thermo gravimetric analysis(TGA), Dynamic mechanical analysis (DMA) and Transmission electron microscopy (TEM).

Impedance-matching Method Improving the Performance of the SAW Filter (탄성표면파 필터의 성능 개선을 위한 임피던스 정합의 해석적 방법)

  • 이영진;이승희;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.69-75
    • /
    • 2001
  • In this paper, a fast and easy impedance matching method, which could give the impedance matching component for the general 1 or 2-port network was introduced. First, the entire network structure was defined which consists of the network part to be matched and the impedance matching part composed of inductors and capacitors. Next, the transmission matrix and input and output impedances of the entire network from the terminal impedance conditions were calculated, then the exact solutions for the matching components were obtained. To verify the efficiency of this method, this method was applied to the CDMA If band withdrawal weighted SAW transversal filter, and investigated the effects of the impedance matching before and after, through the simulation and experiment. As the result, the performance of a fractional bandwidth of 1.2%, insertion loss of 29 dB, and VSWR of 80 have improved to a factional bandwidth of 1.8%, insertion loss of 9 dB, VSWR of 3 at 85.38 MHz center frequency. The result shows that this impedance matching method could be used in the SAW devices and other types of 1 or 2-port network.

  • PDF