DOI QR코드

DOI QR Code

고출력 환경에 적용 가능한 광대역 다층 구조 레이돔

Broadband Multi-Layered Radome for High-Power Applications

  • 투고 : 2017.08.14
  • 심사 : 2017.12.23
  • 발행 : 2018.01.31

초록

고출력 응용환경에 적용 가능한 광대역 다층 구조 레이돔을 개발하였다. 이를 위해 다층 레이돔의 전파전파특성을 ABCD 행렬로 표현하였고, Particle swarm 최적화 알고리즘을 상용 수치 모델링 툴로 구현하여 레이돔의 최적화된 층별 두께와 물질상수를 구하였다. 바람, 눈, 얼음 등 외부 기상 환경을 고려한 기계적 특성을 감안하여 레이돔을 재설계하였다. 대형구조물의 제작 제한조건을 고려한 두께를 재산출하여 전력 전달특성을 재분석하였다. 대기 정전파괴 때보다 10 dB 높은 첨두 전기장의 세기 조건에서 상용 해석 툴을 이용하여, 설계된 레이돔의 RF에 대한 대기 정전파괴 특성을 분석하였다. 설계된 다층 레이돔을 제작하여 소신호 및 대신호 시험을 수행하였고, 상용 도구들을 사용한 계산값과 비교하여 목표 성능을 획득하였다.

In this paper, we developed a broadband multi-layered radome applicable for high-power applications. In this regard, we presented the wave propagation characteristics of the broadband multi-layered radome with the ABCD matrix and obtained the optimal thickness and the material constant for each layer by an optimization algorithm called "particle swarm optimization," implemented by a commercial numerical modeling tool. Further, we redesigned it in view of mechanical properties to reflect environmental conditions such as wind, snow, and ice. The power transmission property was reanalyzed based on the recalculated data of each layer's thickness to consider the limitations of the fabrication of a large structure. Under the condition of a peak electric field strength that is 10 dB above the critical electric field strength in air breakdown, we analyzed the air breakdown by radio frequency(RF) in the designed radome using the commercial full-wave electromagnetic tool. The radome was manufactured and tested by continuous wave(CW) RF small signal and large signal in an anechoic chamber. The test results showed good agreement with those attained by simulation.

키워드

참고문헌

  1. R. U. Nair, R. M. Jha, "Electromagnetic performance analysis of a novel monolithic radome for airborne applications," IEEE Transactions on Antennas and Propagation, vol. 57, no. 11, pp. 3664-3668, Nov. 2009. https://doi.org/10.1109/TAP.2009.2026595
  2. K. Chang, "Antenna angle error correction to radome curvature," in IEEE Antennas and Propagation Society International Symposium, 1995 Digest, Newport Beach, CA, 1995, vol. 3, pp. 1426-1429.
  3. Y. E. Erdemli, K. Sertel, R. A. Gilbert, D. E. Wright, and J. L. Volakis, "Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays," IEEE Transactions on Antennas and Propagation, vol. 50, no. 12, pp. 1716-1724, Dec. 2002. https://doi.org/10.1109/TAP.2002.807377
  4. A. K. Rashid, B. Li, and Z. Shen, "An overview of threedimensional frequency-selective structures," IEEE Antennas and Propagation Magazine, vol. 56, no. 3, pp. 43-67, Jun. 2014. https://doi.org/10.1109/MAP.2014.6867682
  5. D. L. Adamy, EW 104: Electronic Warfare against a New Generation of Threats, Artech House, pp. 5-119, 2015.
  6. K. V. Ravi, R. F. Ormondroyd, "Effect of CW and pulse jamming on direct-sequence spread-spectrum code acquisition using a sequential detector," in MILCOM 92 Conference Record, CA, Oct. 1992, vol. 2, pp. 638-643.
  7. A. Purwar, D. Joshi, and V. K. Chaubey, "GPS signal jamming and anti-jamming strategy - A theoretical analysis," in 2016 IEEE Annual India Conference(INDICON), Bangalore, 2016, pp. 1-6.
  8. C. A. Balanis, Antenna Theory Analysis and Design Second Edition, John Wiley & Sons, Inc., pp. 785-838, 1997.
  9. D. J. Kozakoff, Analysis of Radome-Enclosed Antennas, Artech House Microwave Library, pp. 69-95, 1997.
  10. J. Robinson, Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, Feb. 2004. https://doi.org/10.1109/TAP.2004.823969
  11. 이경원, 홍익표, 박범준, 정영철, 육종관, "Particle swarm optimization을 이용한 다층구조 레이돔 설계," 한국전자파학회논문지, 21(7), pp. 744-751, 2010년 7월. https://doi.org/10.5515/KJKIEES.2010.21.7.744
  12. W. Woo, J. S. DeGroot, "Microwave absorption and plasma heating due to microwave breakdown in the atmosphere," Physics of Fluids, vol. 27, no. 2, pp. 475-487, 1984. https://doi.org/10.1063/1.864645
  13. P. T. Partridge, J. Farrell, and J. Tate, Standard/ Handbook for RF Ionization Breakdown Prevention in Spacecraft Components, Antenna Systems Department, The Aerospace Corporation El Segundo, Jun. 2015.
  14. MIL-STD-810F, "Department of defense test method standard for environmental engineering considerations and laboratory tests," Department of Defense, USA, 2000.
  15. ETM. Available: http://www.etm-inc.com.