Browse > Article

Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays  

Jung, Min-Hye (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Polymer(Korea) / v.31, no.6, 2007 , pp. 518-525 More about this Journal
Abstract
The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.
Keywords
Poly(ethylene terephthalate); fibers; nanocomposites; organoclay;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. S. Triantafillidis, P. C. LeBaron, and T. J. Pinnavaia, Chem. Mater., 14, 4088 (2002)
2 C.-M. Leu, Z.-W. Wu, and K-H. Wei, Chem. Mster., 14, 3016 (2002)
3 R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997)
4 A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 808 (2003)
5 G. Calgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001)   DOI   ScienceOn
6 J.-H. Chang, B. S. Seo, and D. H. Hwang, Polymer, 43, 2969 (2002)
7 L. Chen and S.-C. Wong, J. Appl. Polym. Sci., 88, 3298 (2003)   DOI   ScienceOn
8 C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Polym. Sci.; Part B: Polym. Phys., 40, 2661 (2002)
9 A. Akelah and A. Moet, J. Mater. Sci., 31, 3589 (1996)
10 H. - L. Tyan, C. - M. Leu, and K. - H. Wei, Chem. Mster., 13, 222 (2001)
11 A. C. Balazs, C. Singh, and E. Zhulina, Macromolecules, 31, 8370 (1998)
12 S. H. Hsiao, G. S. Liou, and L. M. Chang, J. Appl. Polym. Sci., 80, 2067 (2001)   DOI   ScienceOn
13 Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Karnigaito, J. Polym. Sci.: Part A: Polym. Chem., 31, 1755 (1993)
14 M.-H. Jung, J.-H. Chang, and J.-C. Kim, Polym. Eng. Sci., in press (2007)
15 H. Xu, S.-W. Kuo, J.-S. Lee, and F.-C. Chang. Macromolecules, 35, 8788 (2002)
16 Z. Wang, T. Lan, and T. J. Pinnavaia, Chem. Mater., 8, 2200 (1996)
17 Y. Ke, J. Lu, X. Vi, J. Zhao, and Z. Qi, J. Appl. Polym. Sci, 78, 808 (2000)
18 R. A. Vaia, K D. Jandt, E. J. Kramer, and E. P. Giannelis, Chem. Mater., 8, 2628 (1996)
19 R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 7990 (1997)
20 M. Pramanik, S. K. Srivastava, B. K. Samantarray, and A. K. Bhowrnick, J. Polym. Sci.; Part B: Polym. Phys., 40, 2065 (2002)
21 X. Li, T. Kang, W.-J. Jo, J.-K Lee, and C.-S. Ha, Macromol. Rapid Commum., 22, 1306 (2001)
22 J. H. Chang, D. K. Park, and K. J. Ihn, J. Appl. Polym. Sci., 84, 2294 (2002)
23 J.-H. Chang, Y. U. An, S. J. Kim, and S. Im, Polymer, 44, 5655 (2003)   DOI   ScienceOn
24 R. H. Vora, P. K. Pallathadka, S. H. Goh, T.-S. Chung, Y. X. Lim, and T. K. Bang, Macromol. Mater. Eng., 288, 337 (2003)   DOI   ScienceOn
25 T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons, West Sussex, 2000
26 T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002)
27 H.-L. Tyan, C.-Y. Wu, and K-H. Wei, J. Appl. Polym. Sci, 81, 1742 (2001)
28 J.-H. Chang and Y. U. An, J. Polym. Sci.; Part B: Polym. Phys., 40, 670 (2002)
29 J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004)   DOI   ScienceOn
30 Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993)
31 A. Okada and A. Usuki, Mater. Sci. Eng., C3, 109 (1995)
32 Y. Kim, W. H. Goh, T. Chang, C.-S. Ha, and M. Ree, Adv. Eng. Meter., 6, 39 (2004)   DOI   ScienceOn