• Title/Summary/Keyword: Transient fault

Search Result 419, Processing Time 0.029 seconds

Fault-Tolerance Improvement of Real-Time Embedded System using Static Checkpointing (실시간 임베디드 시스템의 결함 허용성 개선을 위한 정적 체크포인팅 방안)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1147-1152
    • /
    • 2007
  • This paper deals with a scheme for fault-tolerance improvement of real-time embedded systems, which engages an equidistant checkpointing technique to tolerate transient errors. Transient errors are caused by transient faults which are the most significant type of fault in reliable computer systems. Transient faults are assumed to occur according to a Poisson process and to be detected in a non-concurrent manner (e.g., checked periodically). The probability of the successful real-time task completion in the presence of transient errors is derived with the consideration of the possible effects of the transient errors. Based on this, a condition under which inserting checkpoints improves the fault-tolerance of the system is introduced and an optimal equidistant checkpointing strategy that achieves the highest fault tolerance is presented.

Transient Current Limiting Characteristics of Flux-Lock Type SFCL Using Double Quench (이중퀜치를 이용한 자속구속형 초전도한류기의 과도전류제한 특성)

  • Choi, Sang-Jae;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • In this paper, the flux-lock type superconducting fault current limiter (SFCL) using double quench was suggested and its transient current limiting characteristics were analyzed. The suggested flux-lock type SFCL using double quench consists of two magnetically coupled windings and two $high-T_{c}$ superconducting (HTSC) elements connected in series with each winding. To analyze the transient current limiting characteristics of the flux-lock type SFCL using double quench, the short-circuit tests according to the fault angles, which affect the transient component of the fault current right after the fault occurs, were executed. From the comparative analysis for the short-circuit tests at both $0^{\circ}$ and $90^{\circ}$ fault angles, the useful transient current limiting operations of the suggested flux-lock type SFCL through the double or the single quench occurrence were confirmed.

Enhancement of Power System Transient Stability and Power Quality Using a Novel Solid-state Fault Current Limiter

  • Fereidouni, A.R.;Vahidi, B.;Mehr, T. Hoseini;Doiran, M. Garmroodi
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.474-483
    • /
    • 2011
  • Solid-state fault current limiters (SSFCL) in power systems are alternative devices to limit prospective short circuit currents from reaching lower levels. Fault current limiters (FCL) can be classified into two categories: R-type (resistive) FCLs and L-type (inductive) FCLs. L-type FCL uses an inductor to limit fault level and is more efficient in suppressing voltage drop during a fault. In contrast, R-type FCL is constructed with a resistance and is more effective in consuming the acceleration energy of generators during a fault. Both functions enhance the transient stability of the power system. In the present paper, a novel SSFCL is proposed to enhance power system transient stability and power quality. The proposed SSFCL uses both functions of an L-type and R-type FCL. SSFCL consists of four diodes, one self-turn-off IGCT, a current-limiting by-pass inductor (L), and a variable resistance parallel with an inductor for improvement of power system stability and prevention of over-voltage across SSFCL. The main advantages of the proposed SSFCL are the simplicity of its structure and control, low steady-state impedance, fast response, and the existence of R-type and Ltype impedances during the fault, all of which improve power system stability and power quality. Simulations are accomplished in PSCAD/EMTDC.

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

The Analysis of Transient currents in a Magnetic coupling High-Tc superconducting Fault Current Limiter (자기결합형 고온초전도한류기의 과도전류 해석)

  • Joo, Min-Seok;Chu, Yong;Yim, Do-Hyun;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.24-26
    • /
    • 1995
  • In this paper, we investigated transient fault currents in a magnetic coupling High-Tc superconducting current limiter(HCL). It has an important effect on the reliability and stability of the power system. In order to analyze transient fault characteristics of HCL, we fabricated a magnetic coupling HCL and tested it in different fault conditions. An important parameter of design and manufacture which makes HCL inherently reliable is reduction of inrush fault currents. Without inrush fault currents, the currents flowing under such conditions can be limited to a desired-value within one cycle. Inrush fault current depends on saturation, normal spot propagation velocity, turns ratio and the fault angle.

  • PDF

The Effect Assessment Method of Control and Protection Systems on Transient Stability of Power Systems

  • Miki, Tetsushi;Sugino, Ryuzaburou;Kono, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.736-740
    • /
    • 2004
  • In order to overcome the problems of simulation methods, the power system transient stability assessment method using critical fault clearing time functions has been developed. Using the above method, this paper has developed the new method which can assess accurately and efficiently the effects of control and protection systems on transient stability which is the most important characteristic to assess in power systems. At first, critical fault clearing time functions CCT(W:load) are defined by taking notice of the fact that transient stability is mainly controlled by fault clearing time and load. Next, the method to be enable to assess accurately and efficiently the effects of control and protection systems on transient stability has been newly developed by using the above functions. Finally, it has been applied to the effect assessment in the occurrence of a three-phase fault in a model power system. Results of application have been clarified its effectiveness.

  • PDF

Transient Phenomena Analysis and Estimation According to Unbalance Factors on Underground Power Cable Systems (지중송전계통에서 불평형 구성요소에 따른 과도현상 해석 및 평가)

  • Jung Chae-Kyun;Lee Jong-Beom;Kang Ji-Won;Lee Dong-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.410-417
    • /
    • 2005
  • This paper analyses the transient phenomena against single line to ground fault and lightning surge on underground power cable systems. For analysis in various fault conditions, several actual underground power cable systems are modeled using ATP In ground fault, the transient characteristic of the conductor and the sheath according to the fault current and the installation types of CCPU are analysed. In lightning surge strokes, the various unbalanced conditions including the length of crossbonded lead, the breakdown of CCPU and distance unbalance are considered. This paper is expected to contribute the establishment of proper protection methods against transients on underground power cable systems.

An Adaptive Reclosing Algorithm to Discriminate between Permanent Fault and Transient Fault using THD of Voltage Waveform (전압파형의 THD를 이용한 영구/일시고장 판별 적응형 재폐로 기법)

  • Lee, Chul-Moon;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1347-1352
    • /
    • 2010
  • This paper presents a new adaptive single-phase auto reclosure (SPAR) algorithm to discriminate between a permanent fault and a transient fault and to minimize a protection dead time. The algorithm precisely detects the extinction of the secondary arc, based on THD's profiles on the faulted phase voltage waveform. The EMTP/ATPDraw program was used to simulate the single phase grounding fault for evaluating the proposed algorithm. And the simulation results show that the proposed algorithm is performing well.

Development of EMTDC model for Resistance type Fault Current Limiter considering transient characteristic (저항형초전도한류기 과도특성을 고려한 EMTDC 모델개발)

  • 윤재영;김종율;이승렬
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • Nowadays, one of the serious problems in KEPCO(Korea Electric Power Co-Operation) system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(High Voltage Direct Current-Back to Back) and FCL(fault current limiter). But, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor -Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC(Electro-Magnetic Transient Direct Current) model for resistance type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching phenomena occur.

A Study on the Detection of Transient Fault and Permanent Fault in Transmission Lines Using Wavelet Transform (Wavelet 변환을 이용한 송전선로의 일시고장과 영구고장 검출에 관한 연구)

  • Cho, Seong-Bin;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1366-1368
    • /
    • 1999
  • With conventional single pole auto-reclosure (SPAR), unsuccessful reclosure using a fixed dead time in the case of transient fault, or reclosure onto a permanent fault. may aggravate the potential damage to the system and equipment. In this respect, the research is needed to implement SPAR effectively. In this paper, we present a wavelet transform approach to detect and discriminate between transient fault and permanent fault in transmission lines.

  • PDF