• Title/Summary/Keyword: Transform Unit

Search Result 263, Processing Time 0.028 seconds

ON THE BEREZIN TRANSFORM ON $D^n$

  • Lee, Jae-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.311-324
    • /
    • 1997
  • We show that if $f \in L^{\infty}(D^n)$ satisfies Sf = rf for some r in the unit circle, where S is any convex combination of the iterations of Berezin operator, then f is n-harmonic. And we give some remarks and a conjecture on the space $M_2={f \in L^2(D^2, m \times m)\midBf = f$.

  • PDF

BOUNDEDNESS OF BEREZIN TRANSFORM ON HERZ SPACES

  • Cho, Chu-Hee;Na, Kyun-Guk
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.829-842
    • /
    • 2012
  • In this paper, we give the condition for the boundedness of the Berezin transforms on Herz spaces with a normal weight on the unit ball of $\mathbb{C}^n$. And we provide the integral estimates concerning pluriharmonic kernel functions. Using this, we finally obtain the growth estimates of the Berezin transforms on such Herz spaces.

3-D Lossy Volumetric Medical Image Compression with Overlapping method and SPIHT Algorithm and Lifting Steps (Overlapping method와 SPIHT Algorithm과 Lifting Steps을 이용한 3차원 손실 의료 영상 압축 방법)

  • 김영섭
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.263-269
    • /
    • 2003
  • This paper focuses on lossy medical image compression methods for medical images that operate on three-dimensional(3D) irreversible integer wavelet transform. We offer an application of the Set Partitioning in Hierarchical Trees(SPIHT) algorithm〔l-3〕to medical images, using a 3-D wavelet decomposition and a 3-D spatial dependence tree. The wavelet decomposition is accomplished with integer wavelet filters implemented with the lifting method, where careful scaling and truncations keep the integer precision small and the transform unitary. As the compression rate increases, the boundaries between adjacent coding units become increasingly visible. Unlike video, the volume image is examined under static condition, and must not exhibit such boundary artifacts. In order to eliminate them, we utilize overlapping at axial boundaries between adjacent coding units. We have tested our encoder on medical images using different integer filters. Results show that our algorithm with certain filters performs as well. The improvement is visibly manifested as fewer ringing artifacts and noticeably better reconstruction of low contrast.

  • PDF

PCB Board Impedance Analysis Using Similarity Transform for Transmission Matrix (전송선로행열에 대한 유사변환을 이용한 PCB기판 임피던스 해석)

  • Suh, Young-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2052-2058
    • /
    • 2009
  • As the operating frequency of digital system increases and voltage swing decreases, an accurate and high speed analysis of PCB board becomes very important. Transmission matrix method, which use the multiple products of unit column matrix, is the highest speedy method in PCB board analysis. In this paper a new method to reduce the calculation time of PCB board impedances is proposed. First, in this method the eigenvalue and eigenvectors of the transmission matrix for unit column of PCB are calculated and the transmission matrix for the unit column is transformed using similarity transform to reduce the number of multiplication on the matrix elements. This method using the similarity transform can reduce the calculation time greatly comparing the previous method. The proposed method is applied to the 1.3 inch by 1.9 inch board and shows about 10 times reduction of calculation time. This method can be applied to the PCB design which needs a lots of repetitive calculation of board impedances.

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.

A New Method of Fault Detection for Power Converter Unit in Control Rod Control System (원자로 제어봉제어시스템 전력변환부에 대한 새로운 고장 검출 방법)

  • Cheon, Jong-Min;Kim, Choon-Kyoung;Kim, Seog-Ju;Kwon, Soon-Man;Shin, Jong-Ryeol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.556-558
    • /
    • 2004
  • In this paper, we introduce a new method of detecting faults for a power converter unit in Control Rod Control System. The faults of a power converter unit can exert harmful influence upon the operation of Control Rod Drive Mechanisms and the control of the reactor output. This situation makes the quick and correct detection of failures in a power converter unit very important. We devise a new method of fault detection for the digital power controller and improve the drawbacks of the existing fault detector.

  • PDF

A PARTIAL CAYLEY TRANSFORM OF SIEGEL-JACOBI DISK

  • Yang, Jae-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.781-794
    • /
    • 2008
  • Let $\mathbb{H}_g$ and $\mathbb{D}_g$ be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let $\mathbb{C}^{(h,g)}$ be the Euclidean space of all $h{\times}g$ complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ onto the Siegel-Jacobi space $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ which gives a partial bounded realization of $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$ by $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. We prove that the natural actions of the Jacobi group on $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. and $\mathbb{H}_g{\times}\mathbb{C}^{(h,g)}$. are compatible via a partial Cayley transform. A partial Cayley transform plays an important role in computing differential operators on the Siegel Jacobi disk $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$. invariant under the natural action of the Jacobi group $\mathbb{D}_g{\times}\mathbb{C}^{(h,g)}$ explicitly.

An Efficient Hardware Design for Scaling and Transform Coefficients Decoding (스케일링과 변환계수 복호를 위한 효율적인 하드웨어 설계)

  • Jung, Hongkyun;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2253-2260
    • /
    • 2012
  • In this paper, an efficient hardware architecture is proposed for inverse transform and inverse quantization of H.264/AVC decoder. The previous inverse transform and quantization architecture has a different AC and DC coefficients decoding order. In the proposed architecture, IQ is achieved after IT regardless of the DC or AC coefficients. A common operation unit is also proposed to reduce the computational complexity of inverse quantization. Since division operation is included in the previous architecture, it will generate errors if the processing order is changed. In order to solve the problem, the division operation is achieved after IT to prevent errors in the proposed architecture. The architecture is implemented with 3-stage pipeline and a parallel vertical and horizontal IDCT is also implemented to reduce the operation cycle. As a result of analyzing the proposed ITIQ architecture operation cycle for one macroblock, the proposed one has improved by 45% than the previous one.

Design of High Performance Multi-mode 2D Transform Block for HEVC (HEVC를 위한 고성능 다중 모드 2D 변환 블록의 설계)

  • Kim, Ki-Hyun;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.329-334
    • /
    • 2014
  • This paper proposes the hardware architecture of high performance multi-mode 2D forward transform for HEVC which has same number of cycles for processing any type of four TUs and yield high throughput. In order to make the original image which has high pixel and high resolution into highly compressed image effectively, the transform technique of HEVC supports 4 kinds of pixel units, TUs and it finds the optimal mode after performs each transform computation. As the proposed transform engine uses the common computation operator which is produced by analyzing the relationship among transform matrix coefficients, it can process every 4 kinds of TU mode matrix operation with 35cycles equally. The proposed transform block was designed by Verilog HDL and synthesized by using TSMC 0.18um CMOS processing technology. From the results of logic synthesis, the maximum operating frequency was 400MHz and total gate count was 214k gates which has the throughput of 10-Gpels/cycle with the $4k(3840{\times}2160)@30fps$ image.