• Title/Summary/Keyword: Transcriptional Activity

Search Result 637, Processing Time 0.031 seconds

Anti-inflammatory Effect of an Ethanolic Extract of Myagropsis yendoi in Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Salih, Sarmad Ali;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Marine brown algae have been identified as a rich source of structurally diverse bioactive compounds. Whether Myagropsis yendoi ethanolic extracts (MYE) inhibit inflammatory responses was investigated using lipopolysaccharide (LPS)-stimulated microglia BV-2 cells. MYE inhibited LPS-induced nitric oxide (NO) production in a dose-dependent manner and suppressed the expression of inducible nitric oxide synthase in BV-2 cells. MYE also reduced the production of pro-inflammatory cytokines in LPS-stimulated BV-2 cells. LPS-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) transcriptional activity and NF-${\kappa}B$ translocation into the nucleus were significantly inhibited by MYE treatment through preventing degradation of the inhibitor ${\kappa}B-{\alpha}$. Moreover, MYE inhibited the phosphorylation of AKT, ERK, JNK, and p38 mitogen-activated protein kinase in LPS-stimulated BV-2 cells. These results indicate that MYE is a potential source of therapeutic or functional agents for neuroinflammatory diseases.

Glial Cell-specific Regulation of the JC virus Early Promoter by Silencer and DNA Methylation (Silencer 및 DNA methylation에 의한 JC virus early promoter의 뇌교세포 특이적인 조절)

  • 김희선;우문숙
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). The JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, thus transcriptional regulation constitutes a major mechanism of glial tropism in PML. Here we found that pentanucleotide sequence immediately upstream of the TATA sequence functions as a cell-specific silencer in the JC virus transcription. In vitro binding studies showed that synthetic oligonucleotides spanning a pentanucleotide sequence, designated "oligo 2", interacts with nuclear proteins from non-glial cells in a cell-specific manner. Furthermore, the sequence preferentially repressed the heterologous thymidine kinase promoter activity in non-glial cells. We also tested whether JC virus transcription is controlled by DNA methylation. Transient transfection of in vitro methylated JC virus promoter abolished transcription in both the glial and non-glial cells. The repression fold was much larger in glial cells than in non-glial cells. Taken together, this finding suggests that glial cell-specific expression of the JC virus is controlled by DNA methylation as well as cell-specific silencers.

Effect of Transposable Element Insertion on Gene Expression (Transposable Element 삽입의 유전자 발현에 미치는 영향)

  • 김화영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.349-356
    • /
    • 1987
  • Insertions of transposable elements in or near a structural gene give rise to null phenotypes, reduced levels of gene expression, or alteration on the tissue-specific pattern of gene expression. Null phenotypes often result from insertions in exons. Reduced levels of gene expression results from insertions in various regions such as promoter region, 5' non-translated region, exon and intron. The maize allele of Adh1-3F1124 is an example of alteration in the tissue-specific patetern of gene expression. Adh1-3F1124 contains a Mu element inserted 31 bp 5' to the transcriptional start site of the wild-type Adh1 activity in seeds and anaerobically-treated seedlings but normal levels in the pollen. Upon the insertion of a transposable element a certain number of host DNA sequences at the insertion site is duplcated. When transposable elements excise, all element sequences are deleted. However, the duplicated host sequences may be left intact or deleted to various extents. This results in null phenotypes, restoration of original levels of gene expression, or altered levels of gene expression. On the basis of effects of transposable-element insertions or excisions on gene expression, the usefulness of transposable ellements for studies on gene expression is discussed.

  • PDF

Down-Regulation of Sox11 Is Required for Efficient Osteogenic Differentiation of Adipose-Derived Stem Cells

  • Choi, Mi Kyung;Seong, Ikjoo;Kang, Seon Ah;Kim, Jaesang
    • Molecules and Cells
    • /
    • v.37 no.4
    • /
    • pp.337-344
    • /
    • 2014
  • Adipose-derived stem cells represent a type of mesenchymal stem cells with the attendant capacity to self-renew and differentiate into multiple cell lineages. We have performed a microarray-based gene expression profiling of osteogenic differentiation and found that the transcription factor Sox11 is down-regulated during the process. Functional assays demonstrate that down-regulation of Sox11 is required for an efficient differentiation. Furthermore, results from forced expression of constitutively-active and dominant-negative derivatives of Sox11 indicate that Sox11 functions as a transcriptional activator in inhibiting osteogenesis. Sox11 thus represents a novel regulator of osteogenesis whose expression and activity can be potentially manipulated for controlled differentiation.

Ddt Increase Aromatase Gene Expression and Activity in Leydig Cells

  • Lee, Kyung-Jin;Kim, Ji-Young;Shin, Dong-Weon;Cho, Young-Rhan;Jung, Kyung-Sik;You, Ho-Jin;Jeong, Hye-Gwang
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.137-137
    • /
    • 2003
  • Dichlorodiphenyltrichloroethane (DDT) is a widespread environmental pollutant. Earlier reports have demonstrated that DDT is an endocrine-active compound capable of affecting early-stage sexual differentiation in male rats. Experiments based on receptor binding affinity and receptor-mediated transcriptional activation have identified DDE as an androgen receptor antagonist.(omitted)

  • PDF

Sirtuin/Sir2 Phylogeny, Evolutionary Considerations and Structural Conservation

  • Greiss, Sebastian;Gartner, Anton
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.407-415
    • /
    • 2009
  • The sirtuins are a protein family named after the first identified member, S. cerevisiae Sir2p. Sirtuins are protein deacetylases whose activity is dependent on $NAD^+$ as a cosubstrate. They are structurally defined by two central domains that together form a highly conserved catalytic center, which catalyzes the transfer of an acetyl moiety from acetyllysine to $NAD^+$, yielding nicotinamide, the unique metabolite O-acetyl-ADP-ribose and deacetylated lysine. One or more sirtuins are present in virtually all species from bacteria to mammals. Here we describe a phylogenetic analysis of sirtuins. Based on their phylogenetic relationship, sirtuins can be grouped into over a dozen classes and subclasses. Humans, like most vertebrates, have seven sirtuins: SIRT1-SIRT7. These function in diverse cellular pathways, regulating transcriptional repression, aging, metabolism, DNA damage responses and apoptosis. We show that these seven sirtuins arose early during animal evolution. Conserved residues cluster around the catalytic center of known sirtuin family members.

Brain consequences of acute kidney injury: Focusing on the hippocampus

  • Malek, Maryam
    • Kidney Research and Clinical Practice
    • /
    • v.37 no.4
    • /
    • pp.315-322
    • /
    • 2018
  • The high mortality rates associated with acute kidney injury are mainly due to extra-renal complications that occur following distant-organ involvement. Damage to these organs, which is commonly referred to as multiple organ dysfunction syndrome, has more severe and persistent effects. The brain and its sub-structures, such as the hippocampus, are vulnerable organs that can be adversely affected. Acute kidney injury may be associated with numerous brain and hippocampal complications, as it may alter the permeability of the blood-brain barrier. Although the pathogenesis of acute uremic encephalopathy is poorly understood, some of the underlying mechanisms that may contribute to hippocampal involvement include the release of multiple inflammatory mediators that coincide with hippocampus inflammation and cytotoxicity, neurotransmitter derangement, transcriptional dysregulation, and changes in the expression of apoptotic genes. Impairment of brain function, especially of a structure that has vital activity in learning and memory and is very sensitive to renal ischemic injury, can ultimately lead to cognitive and functional complications in patients with acute kidney injury. The objective of this review was to assess these complications in the brain following acute kidney injury, with a focus on the hippocampus as a critical region for learning and memory.

Synthesis and NF-κB Inhibitory Activities of N-Substituted-aryl-3-phenylpropanamide Derivatives (N-아릴-3-페닐프로판아마이드 유도체 합성 및 NF-κB 저해 활성)

  • Choi, Minho;Kim, Youngsoo;Jung, Jae-Kyung;Lee, Heesoon
    • YAKHAK HOEJI
    • /
    • v.59 no.2
    • /
    • pp.55-58
    • /
    • 2015
  • A series of N-substitutedaryl-3-phenylpropanamide derivatives were synthesized and their inhibitory activities on LPS-induced NF-$1{\kappa}B$ transcriptional activity on RAW 264.7 cells were evaluated. Cl substituted derivatives (1e, 1f) have shown more potent activities than parent hit compound KL-1156.

4'-O-β-D-Glucosyl-5-O-Methylvisamminol Attenuates Pro-Inflammatory Responses and Protects against Oxidative Damages

  • Yoo, Ok-Kyung;Keum, Young-Sam
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.381-385
    • /
    • 2019
  • We attempted to examine anti-inflammatory and anti-oxidant effects of 4'-O-${\beta}$-D-glucosyl-5-O-methylvisamminol (GOMV), the first epigenetic inhibitor of histone phosphorylation at Ser10. While GOMV did not affect the viability of murine macrophage RAW 264.7 cells, it significantly suppressed lipopolysaccharide (LPS)-induced generation of prostaglandin $E_2$ ($PGE_2$) and nitric oxide (NO) through transcriptional inhibition of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). GOMV also scavenged free radicals in vitro, increased NF-E2-related factor 2 (NRF2), and activated antioxidant response element (ARE), thereby resulting in the induction of phase II cytoprotective enzymes in human keratinocyte HaCaT cells. Finally, GOMV significantly protected HaCaT cells against 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative intracellular damages. Together, our results illustrate that GOMV possesses anti-inflammatory and anti-oxidant activity.

Salicylamide Enhances Melanin Synthesis in B16F1 Melanoma Cells

  • Ito, Yusuke;Sato, Kazuomi
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.445-451
    • /
    • 2021
  • Salicylamide, a non-steroidal anti-inflammatory drug (NSAID), is used as an analgesic and antipyretic agent. We have previously shown that several NSAIDs have anti-melanogenic properties in B16F1 melanoma cells. In contrast, we have found that salicylamide enhances melanin contents in B16F1 melanoma cells; however, the underlying mechanism is not known. Therefore, we investigated the mechanism through which salicylamide stimulates melanogenesis. Interestingly, salicylamide enhanced diphenolase activity in a cell-free assay. Western blotting and real-time RT-PCR revealed that salicylamide increased tyrosinase expression via transcriptional activation of the Mitf gene. Together, our results indicate that salicylamide could be used as an anti-hypopigmentation agent for skin and/or hair.