Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.222

Salicylamide Enhances Melanin Synthesis in B16F1 Melanoma Cells  

Ito, Yusuke (Division of Animal Science, College of Agriculture, Tamagawa University)
Sato, Kazuomi (Division of Animal Science, College of Agriculture, Tamagawa University)
Publication Information
Biomolecules & Therapeutics / v.29, no.4, 2021 , pp. 445-451 More about this Journal
Abstract
Salicylamide, a non-steroidal anti-inflammatory drug (NSAID), is used as an analgesic and antipyretic agent. We have previously shown that several NSAIDs have anti-melanogenic properties in B16F1 melanoma cells. In contrast, we have found that salicylamide enhances melanin contents in B16F1 melanoma cells; however, the underlying mechanism is not known. Therefore, we investigated the mechanism through which salicylamide stimulates melanogenesis. Interestingly, salicylamide enhanced diphenolase activity in a cell-free assay. Western blotting and real-time RT-PCR revealed that salicylamide increased tyrosinase expression via transcriptional activation of the Mitf gene. Together, our results indicate that salicylamide could be used as an anti-hypopigmentation agent for skin and/or hair.
Keywords
Salicylamide; Melanogenesis; Tyrosinase; Melanoma; Mitf;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Steingrimsson, E., Copelan, N. G. and Jenkina, N. A. (2004) Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 38, 365-411.   DOI
2 Sato, K. and Toriyama, M. (2011) The inhibitory effect of non-steroidal anti-inflammatory drugs (NSAIDs) on the monophenolase and diphenolase activities of mushroom tyrosinase. Int. J. Mol. Sci. 12, 3998-4008.   DOI
3 Bertolotto, C., Abbe, P., Hemesath, T. J., Bille, K., Fisher, D. E., Ortonne, J.-P. and Ballotti, R. (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J. Cell Biol. 142, 827-835.   DOI
4 Decher, H., Schweikardt, T. and Tuczek, F. (2006) The first crystal structure of tyrosinase: all questions answered? Angew. Chem. Int. Ed. Engl. 45, 4546-4550.   DOI
5 Ezzedine, K., Lim, H. W., Suzuki, T., Katayama, I., Hamzavi, I., Lan, C. C. E., Goh, B. K., Anbar, T., Silva de Castro, C., Lee, A. Y., Parsad, D., van Geel, N., Le Poole, I. C., Oiso, N., Benzakri, L., Spritz, R., Gauthier, Y., Hann, S. K., Picardo, M. and Taieb, A.; Vitiligo Global Issue Consensus Conference Panelists (2012) Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Malanoma Res. 25, E1-E13.
6 Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H. and Sugiyama, M. (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281, 8981-8990.   DOI
7 Jackson, I. J., Chambers, D. M., Tsukamoto, K., Copeland, N. G., Gilbert, D. J., Jenkins, N. A. and Hearing, V. (1992) A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 11, 527-535.   DOI
8 Korner, A. and Pawelek, J. (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217, 1163-1165.   DOI
9 Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔC(T) method. Methods 25, 402-408.   DOI
10 Michalska-Malecka, K., Regucka, A., Spiewak, D., Sosnowska-Ponska, M. and Niewiem, A. (2016) Does the use of acetylsalicylic acid have an influence on our vision? Clin. Interv. Aging 11, 1567-1574.   DOI
11 Piazuelo, E. and Lanas, A. (2015) NSAIDs and gastrointestinal cancer. Prostaglandins Other Lipid Mediat. 120, 91-96.   DOI
12 Nicolaidou, E. and Katsambas, A. D. (2014) Pigmentation disorders: hyperpigmentation and hypopigmentation. Clin. Dermatol. 32, 66-72.   DOI
13 Nishio, T., Usami, M., Awaji, M., Shinohara, S. and Sato, K. (2016) Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis. Mol. Cell. Biochem. 412, 101-110.   DOI
14 Niu, C. and Aisa, H. A. (2017) Upregulation of melanogenesis and tyrosinase activity: potential agents for vitiligo. Molecules 22, 1303.   DOI
15 Sato, K., Takahashi, H. and Toriyama, M. (2011) Depigmenting mechanism of NSAIDs on B16F1 melanoma cells. Arch. Dermatol. Res. 303, 171-180.   DOI
16 Alhashimi, M., Mayhoub, A. and Seleem, M. N. (2019) Repurposing salicylamide for combating multidrug-resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 63, e01225-19.
17 Seetha, A., Devaraj, H. and Sudhandiran, G. (2020) Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J. Biochem. Mol. Toxicol. 34, e22433.   DOI
18 Tsukamoito, K., Jackson, I. J., Urabe, K., Montague, P. M. and Hearing, V. J. (1992) A second tyrosinase related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 11, 519-526.   DOI
19 Yiannakopoulou, E. C. (2015) Aspirin and NSAIDs for breast cancer chemoprevention. Eur. J. Cancer Prev. 24, 416-421.   DOI
20 Butenas, S., Cawthern, K. M., van't Veer, C., DiLorenzo, M. E., Lock, J. B. and Mann, K. G. (2001) Antiplatelet agents in tissue factorinduced blood coagulation. Blood 97, 2314-2322.   DOI
21 Desborough, M. J. R. and Keeling, D. M. (2017) The aspirin story-from willow to wonder drug. Br. J. Haematol. 177, 674-683.   DOI
22 Kameyama, K., Takemura, T., Hamada, Y., Sakai, C., Kondoh, S., Nishiyama, S., Urabe, K. and Hearing V. J. (1993) Pigment production in murine melanoma cells in regulated by tyrosinase-related protein-1 (TRP-1), DOPAchrome tautomerase (TRP-2), and a melanogenic inhibitor. J. Invest. Dermatol. 100, 126-131.   DOI
23 Zappavigna, S., Cossu, A. M., Grimaldi, A., Bocchetti, M., Ferraro, G. A., Nicoletti, G. F., Filosa, R. and Caraglia, M. (2020) Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 21, 2605.   DOI
24 Kumar, D., Rahman, H., Tyagi, E., Liu, T., Li, C., Lu, R., Lum, D., Holmen, S. L., Maschek, J. A., Cox, J. E., VanBrocklin, M. W. and Grossman, D. (2018) Aspirin suppresses PGE2 and activates AMP kinase to inhibit melanoma cell motility, pigmentation, and selective tumor growth in vivo. Cancer Prev. Res. 11, 629-642.   DOI
25 Scherschun, L., Kim, J. J. and Lim, H. W. (2001) Narrow-band ultraviolet B is a useful and well-tolerated treatment for vitiligo. J. Am. Acad. Dermatol. 44, 999-1003.   DOI
26 Shi, T., Fujita, K., Gong, J., Nakahara, M., Iwama, H., Liu, S, Yoneyama, H., Morishita, A., Nomura, T., Tani, J., Takuma, K., Tadokoro, T., Himoto, T., Oura, K., Tsutsui, K., Kobara, H. and Masaki, T. (2020) Aspirin inhibits hepatocellular carcinoma cell proliferation in vitro and in vivo via inducing cell cycle arrest and apoptosis. Oncol. Rep. 44, 457-468.   DOI
27 Ullah, S., Chung, C. C. and Hyun, C.-G. (2020) Induction of melanogenesis by fosfomycin in B16F10 cells through the upregulation of P-JNK and P-p38 signaling pathways. Antibiotics (Basel) 9, 172.   DOI
28 Weissmann, G. (1991) Aspirin. Sci. Am. 264, 84-90.   DOI
29 Chowdhury, K. H., Chowdhury, M. R., Mahmud, S., Tareq, A. M., Hanif, N. B., Banu, N., Reza, A. S. M. A., Emran, T. B. and Simal-Gandara, J. (2021) Drug repurposing approach against novel coronavirus disease (COVID-19) through virtual screening targeting SARS-CoV-2 main protease. Biology (Basel) 10, 2.
30 Sato, K., Takahashi, H., Iraha, R. and Toriyama, M. (2008) Down-regulation of tyrosinase expression by acetylsalicylic acid in murine B16 melanoma. Biol. Pharm. Bull. 31, 33-37.   DOI
31 Kim, D., Kim, H. J. and Jun, H. S. (2020) Polygonum multiflorum Thunb. extract stimulates melanogenesis by induction of COX2 expression through the activation of p38 MAPK in B16F10 mouse melanoma cells. Evid. Based Complement. Alternat. Med. 2020, 7642019.
32 Abdel-Rahman, M. S., Reddi, A. S., Curro, F. A., Turkall, R. M., Kadry, A. M. and Hansrote, J. A. (1991) Bioavailability of aspirin and salicylamide following oral co-administration in human volunteers. Can. J. Physiol. Pharmacol. 69, 1436-1442.   DOI
33 Alikhan, A., Felsten, L. M., Daly, M. and Petronic-Rosic, V. (2011) Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up. J. Am. Acad. Dermatol. 65, 473-491   DOI