Browse > Article
http://dx.doi.org/10.1007/s10059-009-0169-x

Sirtuin/Sir2 Phylogeny, Evolutionary Considerations and Structural Conservation  

Greiss, Sebastian (Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee)
Gartner, Anton (Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee)
Abstract
The sirtuins are a protein family named after the first identified member, S. cerevisiae Sir2p. Sirtuins are protein deacetylases whose activity is dependent on $NAD^+$ as a cosubstrate. They are structurally defined by two central domains that together form a highly conserved catalytic center, which catalyzes the transfer of an acetyl moiety from acetyllysine to $NAD^+$, yielding nicotinamide, the unique metabolite O-acetyl-ADP-ribose and deacetylated lysine. One or more sirtuins are present in virtually all species from bacteria to mammals. Here we describe a phylogenetic analysis of sirtuins. Based on their phylogenetic relationship, sirtuins can be grouped into over a dozen classes and subclasses. Humans, like most vertebrates, have seven sirtuins: SIRT1-SIRT7. These function in diverse cellular pathways, regulating transcriptional repression, aging, metabolism, DNA damage responses and apoptosis. We show that these seven sirtuins arose early during animal evolution. Conserved residues cluster around the catalytic center of known sirtuin family members.
Keywords
deacetylase; evolution; molecular phylogeny; SIR2; sirtuin;
Citations & Related Records

Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Aparicio, O.M., Billington, B.L., and Gottschling, D.E. (1991). Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279-1287   DOI   ScienceOn
2 Avalos, J.L., Celic, I., Muhammad, S., Cosgrove, M.S., Boeke, J.D., and Wolberger, C. (2002). Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10, 523-535   DOI   ScienceOn
3 Blander, G., Olejnik, J., Krzymanska-Olejnik, E., McDonagh, T., Haigis, M., Yaffe, M.B., and Guarente, L. (2005). SIRT1 shows no substrate specificity in vitro. J. Biol. Chem. 280, 9780-9785   DOI   ScienceOn
4 Braunstein, M., Rose, A.B., Holmes, S.G., Allis, C.D., and Broach, J.R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592-604   DOI   ScienceOn
5 Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K., and Auwerx, J. (2007). Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann. Med. 39, 335-345   DOI   ScienceOn
6 Du, J., Jiang, H., and Lin, H. (2009). Investigating the ADPribosyltransferase activity of sirtuins with NAD analogs and $^{32}P$-NAD. Biochemistry 48, 2878-2890   DOI   ScienceOn
7 Dryden, S.C., Nahhas, F.A., Nowak, J.E., Goustin, A.S., and Tainsky, M.A. (2003). Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell Biol. 23, 3173-3185   DOI   ScienceOn
8 Fritze, C.E., Verschueren, K., Strich, R., and Easton, E.R. (1997). Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 16, 6495-6509   DOI   ScienceOn
9 Frye, R.A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793-798   DOI   PUBMED   ScienceOn
10 Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498-511   DOI   ScienceOn
11 Holbert, M.A., and Marmorstein, R. (2005). Structure and activity of enzymes that remove histone modifications. Curr. Opin. Struct. Biol. 15, 673-680   DOI   ScienceOn
12 Inoue, T., Hiratsuka, M., Osaki, M., Yamada, H., Kishimoto, I., Yamaguchi, S., Nakano, S., Katoh, M., Ito, H., and Oshimura, M. (2006). SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26, 945-957   DOI   ScienceOn
13 Ivy, J.M., Hicks, J.B., and Klar, A.J. (1985). Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics 111, 735-744   PUBMED
14 Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570-2580   DOI   ScienceOn
15 King, N., Westbrook, M.J., Young, S.L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783-788   DOI   ScienceOn
16 Kowieski, T.M., Lee, S., and Denu, J.M. (2008). Acetylationdependent ADP-ribosylation by Trypanosoma brucei Sir2. J. Biol. Chem. 283, 5317-5326   DOI   ScienceOn
17 Meng, E.C., Pettersen, E.F., Couch, G.S., Huang, C.C., and Ferrin, T.E. (2006). Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics 7, 339   DOI   PUBMED
18 Richards, S., Gibbs, R.A., Weinstock, G.M., Brown, S.J., Denell, R., Beeman, R.W., Gibbs, R., Bucher, G., Friedrich, M., Grimmelikhuijzen, C.J., et al. (2008). The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949-955   DOI   ScienceOn
19 Min, J., Landry, J., Sternglanz, R., and Xu, R.M. (2001). Crystal structure of a SIR2 homolog-NAD complex. Cell 105, 269-279   DOI   ScienceOn
20 Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P.F., Lindquist, E.A., Kamisugi, Y., et al. (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69   DOI   PUBMED   ScienceOn
21 Sauve, A.A., Celic, I., Avalos, J., Deng, H., Boeke, J.D., and Schramm, V.L. (2001). Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40, 15456-15463   DOI   ScienceOn
22 Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F., and Steegborn, C. (2008). Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382, 790-801   DOI   ScienceOn
23 Schwer, B., Bunkenborg, J., Verdin, R.O., Andersen, J.S., and Verdin, E. (2006). Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. USA 103, 10224-10229   DOI   ScienceOn
24 Shou, W., Seol, J.H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z.W., Jang, J., Shevchenko, A., Charbonneau, H., and Deshaies, R.J. (1999). Exit from mitosis is triggered by Tem1- dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233-244   DOI   ScienceOn
25 Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823-6832   DOI   ScienceOn
26 Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 91, 1033-1042   DOI   ScienceOn
27 Smith, J.S., Brachmann, C.B., Celic, I., Kenna, M.A., Muhammad, S., Starai, V.J., Avalos, J.L., Escalante-Semerena, J.C., Grubmeyer, C., Wolberger, C., et al. (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci USA 97, 6658-6663   DOI   ScienceOn
28 Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., et al. (2008). The Trichoplax genome and the nature of placozoans. Nature 454, 955-960   DOI   ScienceOn
29 Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93-105   DOI   ScienceOn
30 Zhao, K., Harshaw, R., Chai, X., and Marmorstein, R. (2004). Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. Proc. Natl. Acad. Sci. USA 101, 8563-8568   DOI   ScienceOn
31 Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., and Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635
32 Hallows, W.C., Lee, S., and Denu, J.M. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 103, 10230-10235   DOI   ScienceOn
33 Solignac, M., Zhang, L., Mougel, F., Li, B., Vautrin, D., Monnerot, M., Cornuet, J.M., Worley, K.C., Weinstock, G.M., and Gibbs, R.A. (2007). The genome of Apis mellifera: dialog between linkage mapping and sequence assembly. Genome Biol. 8, 403   DOI   PUBMED
34 Straight, A.F., Shou, W., Dowd, G.J., Turck, C.W., Deshaies, R.J., Johnson, A.D., and Moazed, D. (1999). Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245-256   DOI   ScienceOn
35 Tsang, A.W., and Escalante-Semerena, J.C. (1998). CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide: 5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273, 31788-31794   DOI   ScienceOn
36 Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., and Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075-1080   DOI   ScienceOn
37 Khan, A.N., and Lewis, P.N. (2005). Unstructured conformations are a substrate requirement for the Sir2 family of NADdependent protein deacetylases. J. Biol. Chem. 280, 36073-36078   DOI   ScienceOn
38 Zhao, K., Chai, X., and Marmorstein, R. (2003b). Structure of the yeast Hst2 protein deacetylase in ternary complex with 2′-Oacetyl ADP ribose and histone peptide. Structure 11, 1403-1411   DOI   ScienceOn
39 Huson, D.H., and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267   DOI   ScienceOn
40 Ivy, J.M., Klar, A.J., and Hicks, J.B. (1986). Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 688-702   DOI   PUBMED
41 Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado, D.O., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776   DOI   PUBMED   ScienceOn
42 Yamamoto, H., Schoonjans, K., and Auwerx, J. (2007). Sirtuin functions in health and disease. Mol. Endocrinol. 21, 1745-1755   DOI   ScienceOn
43 Lombard, D.B., Schwer, B., Alt, F.W., and Mostoslavsky, R. (2008). SIRT6 in DNA repair, metabolism and ageing. J. Intern. Med. 263, 128-141   DOI   PUBMED   ScienceOn
44 Baldauf, S.L. (2003). The deep roots of eukaryotes. Science 300, 1703-1706   DOI   PUBMED   ScienceOn
45 Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L., and Reinberg, D. (2007). SIRT1 regulates the histone methyltransferase SUV39H1 during heterochromatin formation. Nature 450, 440-444   DOI   ScienceOn
46 Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B.J., Castronovo, V., Maechler, P., and Verdin, E. (2007). Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583-33592   DOI   ScienceOn
47 Finnin, M.S., Donigian, J.R., and Pavletich, N.P. (2001). Structure of the histone deacetylase SIRT2. Nat. Struct. Biol. 8, 621-625   DOI   ScienceOn
48 Hiratsuka, M., Inoue, T., Toda, T., Kimura, N., Shirayoshi, Y., Kamitani, H., Watanabe, T., Ohama, E., Tahimic, C.G., Kurimasa, A., et al. (2003). Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun. 309, 558-566   DOI   ScienceOn
49 Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F., Haendeler, J., Mione, M., Dejana, E., Alt, F.W., et al. (2007). SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21, 2644-2658   DOI   ScienceOn
50 Stein, L.D., Bao, Z., Blasiar, D., Blumenthal, T., Brent, M.R., Chen, N., Chinwalla, A., Clarke, L., Clee, C., Coghlan, A., et al. (2003). The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 1, E45   DOI   PUBMED
51 Longo, V.D., and Kennedy, B.K. (2006). Sirtuins in aging and agerelated disease. Cell 126, 257-268   DOI   ScienceOn
52 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612   DOI   ScienceOn
53 van der Horst, A., Tertoolen, L.G., Vries-Smits, L.M., Frye, R.A., Medema, R.H., and Burgering, B.M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2SIRT1. J. Biol. Chem. 279, 28873-28879   DOI   ScienceOn
54 Eichinger, L., Pachebat, J.A., Glockner, G., Rajandream, M.A., Sucgang, R., Berriman, M., Song, J., Olsen, R., Szafranski, K., Xu, Q., et al. (2005). The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43-57   DOI   ScienceOn
55 Tanny, J.C., Dowd, G.J., Huang, J., Hilz, H., and Moazed, D. (1999). An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735-745   DOI   ScienceOn
56 Mead, J., McCord, R., Youngster, L., Sharma, M., Gartenberg, M.R., and Vershon, A.K. (2007). Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases. Mol. Cell. Biol. 27, 2466-2475   DOI   ScienceOn
57 Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., et al. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907-918   DOI   ScienceOn
58 Rosenberg, M.I., and Parkhurst, S.M. (2002). Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl). bHLH repressors in segmentation and sex determination. Cell 109, 447-458   DOI   ScienceOn
59 Wang, C., Chen, L., Hou, X., Li, Z., Kabra, N., Ma, Y., Nemoto, S., Finkel, T., Gu, W., Cress, W.D., et al. (2006). Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat. Cell Biol. 8, 1025-1031   DOI   ScienceOn
60 Tanny, J.C., and Moazed, D. (2001). Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc. Natl. Acad. Sci. USA 98, 415-420   DOI   ScienceOn
61 Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244   DOI   ScienceOn
62 Vaquero, A., Scher, M.B., Lee, D.H., Sutton, A., Cheng, H.L., Alt, F.W., Serrano, L., Sternglanz, R., and Reinberg, D. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20, 1256-1261   DOI   ScienceOn
63 Zhao, K., Chai, X., Clements, A., and Marmorstein, R. (2003a). Structure and autoregulation of the yeast Hst2 homolog of Sir2. Nat. Struct. Biol. 10, 864-871   DOI   ScienceOn
64 Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015   DOI   PUBMED   ScienceOn
65 Dai, J.M., Wang, Z.Y., Sun, D.C., Lin, R.X., and Wang, S.Q. (2007). SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J. Cell Physiol. 210, 161-166   DOI   ScienceOn
66 Gottlieb, S., and Esposito, R.E. (1989). A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771-776   DOI   ScienceOn
67 Landry, J., Sutton, A., Tafrov, S.T., Heller, R.C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000). The silencing protein SIR2 and its homologs are NAD dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97, 5807-5811   DOI   ScienceOn
68 Tanner, K.G., Landry, J., Sternglanz, R., and Denu, J.M. (2000). Silent information regulator 2 family of NAD- dependent histone/ protein deacetylases generates a unique product, 1-Oacetyl- ADP-ribose. Proc. Natl. Acad. Sci. USA 97, 14178-14182   DOI   ScienceOn
69 Vaziri, H., Dessain, S.K., Ng, E.E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L., and Weinberg, R.A. (2001). hSIR2(SIRT1). functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159   DOI   ScienceOn
70 Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689   DOI   ScienceOn
71 Der Ou, H.D., Lohr, F., Vogel, V., Mantele, W., and Dotsch, V. (2007). Structural evolution of C-terminal domains in the p53 family. EMBO J. 26, 3463-3473   DOI   PUBMED   ScienceOn
72 Pruitt, K., Zinn, R.L., Ohm, J.E., McGarvey, K.M., Kang, S.H., Watkins, D.N., Herman, J.G., and Baylin, S.B. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2, e40   DOI   PUBMED
73 Katinka, M.D., Duprat, S., Cornillot, E., Metenier, G., Thomarat, F., Prensier, G., Barbe, V., Peyretaillade, E., Brottier, P., Wincker, P., et al. (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450-453   DOI   ScienceOn
74 Liszt, G., Ford, E., Kurtev, M., and Guarente, L. (2005). Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313-21320   DOI   ScienceOn
75 Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., and Barton, G.J. (2009). Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191   DOI   ScienceOn
76 Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NADdependent histone deacetylase. Nature 403, 795-800   DOI   ScienceOn
77 Astrom, S.U., Cline, T.W., and Rine, J. (2003). The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 163, 931-937   PUBMED
78 Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230   DOI   ScienceOn
79 Ghedin, E., Wang, S., Spiro, D., Caler, E., Zhao, Q., Crabtree, J., Allen, J.E., Delcher, A.L., Guiliano, D.B., Miranda-Saavedra, D., et al. (2007). Draft genome of the filarial nematode parasite Brugia malayi. Science 317, 1756-1760   DOI   PUBMED   ScienceOn
80 Haigis, M.C., and Guarente, L.P. (2006). Mammalian sirtuins - emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921   DOI   ScienceOn
81 Newman, B.L., Lundblad, J.R., Chen, Y., and Smolik, S.M. (2002). A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 162, 1675-1685   PUBMED
82 Braunstein, M., Sobel, R.E., Allis, C.D., Turner, B.M., and Broach, J.R. (1996). Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell Biol. 16, 4349-4356   DOI   PUBMED
83 Bryk, M., Banerjee, M., Murphy, M., Knudsen, K.E., Garfinkel, D.J., and Curcio, M.J. (1997). Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255-269   DOI   ScienceOn
84 Chang, J.H., Kim, H.C., Hwang, K.Y., Lee, J.W., Jackson, S.P., Bell, S.D., and Cho, Y. (2002). Structural basis for the NAD-dependent deacetylase mechanism of Sir2. J. Biol. Chem. 277, 34489-34498   DOI   ScienceOn
85 Greiss, S., Hall, J., Ahmed, S., and Gartner, A. (2008). C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis. Genes Dev. 22, 2831-2842   DOI   ScienceOn
86 Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Karow, M., Blander, G., et al. (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941-954   DOI   PUBMED   ScienceOn
87 Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-kappaBdependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380   DOI   PUBMED   ScienceOn
88 Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148   DOI   PUBMED   ScienceOn
89 Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R., and Sinclair, D.A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392   DOI   PUBMED   ScienceOn
90 Hu, P., Wang, S., and Zhang, Y. (2008). Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by Ab Initio QM/MM molecular dynamics simulations. J. Am. Chem. Soc. 130, 16721-16728   DOI   ScienceOn
91 Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563   DOI   ScienceOn
92 Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118   DOI   PUBMED   ScienceOn
93 North, B.J., and Verdin, E. (2004). Sirtuins: Sir2-related NADdependent protein deacetylases. Genome Biol. 5, 224   DOI   PUBMED
94 Jin, Q., Yan, T., Ge, X., Sun, C., Shi, X., and Zhai, Q. (2007). Cytoplasm- localized SIRT1 enhances apoptosis. J. Cell Physiol. 213, 88-97   DOI   ScienceOn
95 Klar, A.J., Fogel, S., and Macleod, K. (1979). MAR1 - a Regulator of the HMa and HMα Loci in Saccharomyces cerevisiae. Genetics 93, 37-50   PUBMED
96 Pankow, S., and Bamberger, C. (2007). The p53 tumor suppressorlike protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS ONE 2, e782   DOI   PUBMED
97 Kawahara, T.L., Michishita, E., Adler, A.S., Damian, M., Berber, E., Lin, M., McCord, R.A., Ongaigui, K.C., Boxer, L.D., Chang, H.Y., et al. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136, 62-74   DOI   PUBMED   ScienceOn
98 Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998-16003   DOI   ScienceOn
99 Michishita, E., McCord, R.A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T.L., Barrett, J.C., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492-496   DOI   ScienceOn
100 Schwer, B., and Verdin, E. (2008). Conserved metabolic regulatory functions of sirtuins. Cell Metab. 7, 104-112   DOI   ScienceOn