DOI QR코드

DOI QR Code

Sirtuin/Sir2 Phylogeny, Evolutionary Considerations and Structural Conservation

  • Greiss, Sebastian (Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee) ;
  • Gartner, Anton (Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee)
  • 투고 : 2009.10.29
  • 심사 : 2009.11.01
  • 발행 : 2009.11.30

초록

The sirtuins are a protein family named after the first identified member, S. cerevisiae Sir2p. Sirtuins are protein deacetylases whose activity is dependent on $NAD^+$ as a cosubstrate. They are structurally defined by two central domains that together form a highly conserved catalytic center, which catalyzes the transfer of an acetyl moiety from acetyllysine to $NAD^+$, yielding nicotinamide, the unique metabolite O-acetyl-ADP-ribose and deacetylated lysine. One or more sirtuins are present in virtually all species from bacteria to mammals. Here we describe a phylogenetic analysis of sirtuins. Based on their phylogenetic relationship, sirtuins can be grouped into over a dozen classes and subclasses. Humans, like most vertebrates, have seven sirtuins: SIRT1-SIRT7. These function in diverse cellular pathways, regulating transcriptional repression, aging, metabolism, DNA damage responses and apoptosis. We show that these seven sirtuins arose early during animal evolution. Conserved residues cluster around the catalytic center of known sirtuin family members.

키워드

과제정보

연구 과제 주관 기관 : CRUK CDA

참고문헌

  1. Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B.J., Castronovo, V., Maechler, P., and Verdin, E. (2007). Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 282, 33583-33592 https://doi.org/10.1074/jbc.M705488200
  2. Aparicio, O.M., Billington, B.L., and Gottschling, D.E. (1991). Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66, 1279-1287 https://doi.org/10.1016/0092-8674(91)90049-5
  3. Astrom, S.U., Cline, T.W., and Rine, J. (2003). The Drosophila melanogaster sir2+ gene is nonessential and has only minor effects on position-effect variegation. Genetics 163, 931-937
  4. Avalos, J.L., Celic, I., Muhammad, S., Cosgrove, M.S., Boeke, J.D., and Wolberger, C. (2002). Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10, 523-535 https://doi.org/10.1016/S1097-2765(02)00628-7
  5. Baldauf, S.L. (2003). The deep roots of eukaryotes. Science 300, 1703-1706 https://doi.org/10.1126/science.1085544
  6. Blander, G., Olejnik, J., Krzymanska-Olejnik, E., McDonagh, T., Haigis, M., Yaffe, M.B., and Guarente, L. (2005). SIRT1 shows no substrate specificity in vitro. J. Biol. Chem. 280, 9780-9785 https://doi.org/10.1074/jbc.M414080200
  7. Bowler, C., Allen, A.E., Badger, J.H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U., Martens, C., Maumus, F., Otillar, R.P., et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456, 239-244 https://doi.org/10.1038/nature07410
  8. Braunstein, M., Rose, A.B., Holmes, S.G., Allis, C.D., and Broach, J.R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592-604 https://doi.org/10.1101/gad.7.4.592
  9. Braunstein, M., Sobel, R.E., Allis, C.D., Turner, B.M., and Broach, J.R. (1996). Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell Biol. 16, 4349-4356 https://doi.org/10.1128/MCB.16.8.4349
  10. Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015 https://doi.org/10.1126/science.1094637
  11. Bryk, M., Banerjee, M., Murphy, M., Knudsen, K.E., Garfinkel, D.J., and Curcio, M.J. (1997). Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11, 255-269 https://doi.org/10.1101/gad.11.2.255
  12. Chang, J.H., Kim, H.C., Hwang, K.Y., Lee, J.W., Jackson, S.P., Bell, S.D., and Cho, Y. (2002). Structural basis for the NAD-dependent deacetylase mechanism of Sir2. J. Biol. Chem. 277, 34489-34498 https://doi.org/10.1074/jbc.M205460200
  13. Cohen, H.Y., Miller, C., Bitterman, K.J., Wall, N.R., Hekking, B., Kessler, B., Howitz, K.T., Gorospe, M., de Cabo, R., and Sinclair, D.A. (2004). Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390-392 https://doi.org/10.1126/science.1099196
  14. Dai, J.M., Wang, Z.Y., Sun, D.C., Lin, R.X., and Wang, S.Q. (2007). SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J. Cell Physiol. 210, 161-166 https://doi.org/10.1002/jcp.20831
  15. Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K., and Auwerx, J. (2007). Sirtuins: the 'magnificent seven', function, metabolism and longevity. Ann. Med. 39, 335-345 https://doi.org/10.1080/07853890701408194
  16. Der Ou, H.D., Lohr, F., Vogel, V., Mantele, W., and Dotsch, V. (2007). Structural evolution of C-terminal domains in the p53 family. EMBO J. 26, 3463-3473 https://doi.org/10.1038/sj.emboj.7601764
  17. Du, J., Jiang, H., and Lin, H. (2009). Investigating the ADPribosyltransferase activity of sirtuins with NAD analogs and $^{32}P$-NAD. Biochemistry 48, 2878-2890 https://doi.org/10.1021/bi802093g
  18. Dryden, S.C., Nahhas, F.A., Nowak, J.E., Goustin, A.S., and Tainsky, M.A. (2003). Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol. Cell Biol. 23, 3173-3185 https://doi.org/10.1128/MCB.23.9.3173-3185.2003
  19. Eichinger, L., Pachebat, J.A., Glockner, G., Rajandream, M.A., Sucgang, R., Berriman, M., Song, J., Olsen, R., Szafranski, K., Xu, Q., et al. (2005). The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43-57 https://doi.org/10.1038/nature03481
  20. Finnin, M.S., Donigian, J.R., and Pavletich, N.P. (2001). Structure of the histone deacetylase SIRT2. Nat. Struct. Biol. 8, 621-625 https://doi.org/10.1038/89668
  21. Ford, E., Voit, R., Liszt, G., Magin, C., Grummt, I., and Guarente, L. (2006). Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20, 1075-1080 https://doi.org/10.1101/gad.1399706
  22. Fritze, C.E., Verschueren, K., Strich, R., and Easton, E.R. (1997). Direct evidence for SIR2 modulation of chromatin structure in yeast rDNA. EMBO J. 16, 6495-6509 https://doi.org/10.1093/emboj/16.21.6495
  23. Frye, R.A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793-798 https://doi.org/10.1006/bbrc.2000.3000
  24. Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., et al. (2002). Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498-511 https://doi.org/10.1038/nature01097
  25. Ghedin, E., Wang, S., Spiro, D., Caler, E., Zhao, Q., Crabtree, J., Allen, J.E., Delcher, A.L., Guiliano, D.B., Miranda-Saavedra, D., et al. (2007). Draft genome of the filarial nematode parasite Brugia malayi. Science 317, 1756-1760 https://doi.org/10.1126/science.1145406
  26. Gottlieb, S., and Esposito, R.E. (1989). A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56, 771-776 https://doi.org/10.1016/0092-8674(89)90681-8
  27. Greiss, S., Hall, J., Ahmed, S., and Gartner, A. (2008). C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis. Genes Dev. 22, 2831-2842 https://doi.org/10.1101/gad.482608
  28. Haigis, M.C., and Guarente, L.P. (2006). Mammalian sirtuins - emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921 https://doi.org/10.1101/gad.1467506
  29. Haigis, M.C., Mostoslavsky, R., Haigis, K.M., Fahie, K., Christodoulou, D.C., Murphy, A.J., Valenzuela, D.M., Yancopoulos, G.D., Karow, M., Blander, G., et al. (2006). SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941-954 https://doi.org/10.1016/j.cell.2006.06.057
  30. Hallows, W.C., Lee, S., and Denu, J.M. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 103, 10230-10235 https://doi.org/10.1073/pnas.0604392103
  31. Hiratsuka, M., Inoue, T., Toda, T., Kimura, N., Shirayoshi, Y., Kamitani, H., Watanabe, T., Ohama, E., Tahimic, C.G., Kurimasa, A., et al. (2003). Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochem. Biophys. Res. Commun. 309, 558-566 https://doi.org/10.1016/j.bbrc.2003.08.029
  32. Holbert, M.A., and Marmorstein, R. (2005). Structure and activity of enzymes that remove histone modifications. Curr. Opin. Struct. Biol. 15, 673-680 https://doi.org/10.1016/j.sbi.2005.10.006
  33. Hu, P., Wang, S., and Zhang, Y. (2008). Highly dissociative and concerted mechanism for the nicotinamide cleavage reaction in Sir2Tm enzyme suggested by Ab Initio QM/MM molecular dynamics simulations. J. Am. Chem. Soc. 130, 16721-16728 https://doi.org/10.1021/ja807269j
  34. Huson, D.H., and Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254-267 https://doi.org/10.1093/molbev/msj030
  35. Imai, S., Armstrong, C.M., Kaeberlein, M., and Guarente, L. (2000). Transcriptional silencing and longevity protein Sir2 is an NADdependent histone deacetylase. Nature 403, 795-800 https://doi.org/10.1038/35001622
  36. Inoue, T., Hiratsuka, M., Osaki, M., Yamada, H., Kishimoto, I., Yamaguchi, S., Nakano, S., Katoh, M., Ito, H., and Oshimura, M. (2006). SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26, 945-957 https://doi.org/10.1038/sj.onc.1209857
  37. Ivy, J.M., Hicks, J.B., and Klar, A.J. (1985). Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics 111, 735-744
  38. Ivy, J.M., Klar, A.J., and Hicks, J.B. (1986). Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 688-702 https://doi.org/10.1128/MCB.6.2.688
  39. Jin, Q., Yan, T., Ge, X., Sun, C., Shi, X., and Zhai, Q. (2007). Cytoplasm- localized SIRT1 enhances apoptosis. J. Cell Physiol. 213, 88-97 https://doi.org/10.1002/jcp.21091
  40. Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570-2580 https://doi.org/10.1101/gad.13.19.2570
  41. Katinka, M.D., Duprat, S., Cornillot, E., Metenier, G., Thomarat, F., Prensier, G., Barbe, V., Peyretaillade, E., Brottier, P., Wincker, P., et al. (2001). Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450-453 https://doi.org/10.1038/35106579
  42. Kawahara, T.L., Michishita, E., Adler, A.S., Damian, M., Berber, E., Lin, M., McCord, R.A., Ongaigui, K.C., Boxer, L.D., Chang, H.Y., et al. (2009). SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136, 62-74 https://doi.org/10.1016/j.cell.2008.10.052
  43. Khan, A.N., and Lewis, P.N. (2005). Unstructured conformations are a substrate requirement for the Sir2 family of NADdependent protein deacetylases. J. Biol. Chem. 280, 36073-36078 https://doi.org/10.1074/jbc.M508247200
  44. King, N., Westbrook, M.J., Young, S.L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., et al. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783-788 https://doi.org/10.1038/nature06617
  45. Klar, A.J., Fogel, S., and Macleod, K. (1979). MAR1 - a Regulator of the HMa and HMα Loci in Saccharomyces cerevisiae. Genetics 93, 37-50
  46. Kowieski, T.M., Lee, S., and Denu, J.M. (2008). Acetylationdependent ADP-ribosylation by Trypanosoma brucei Sir2. J. Biol. Chem. 283, 5317-5326 https://doi.org/10.1074/jbc.M707613200
  47. Landry, J., Sutton, A., Tafrov, S.T., Heller, R.C., Stebbins, J., Pillus, L., and Sternglanz, R. (2000). The silencing protein SIR2 and its homologs are NAD dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97, 5807-5811 https://doi.org/10.1073/pnas.110148297
  48. Liszt, G., Ford, E., Kurtev, M., and Guarente, L. (2005). Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J. Biol. Chem. 280, 21313-21320 https://doi.org/10.1074/jbc.M413296200
  49. Lombard, D.B., Schwer, B., Alt, F.W., and Mostoslavsky, R. (2008). SIRT6 in DNA repair, metabolism and ageing. J. Intern. Med. 263, 128-141 https://doi.org/10.1111/j.1365-2796.2007.01902.x
  50. Longo, V.D., and Kennedy, B.K. (2006). Sirtuins in aging and agerelated disease. Cell 126, 257-268 https://doi.org/10.1016/j.cell.2006.07.002
  51. Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148 https://doi.org/10.1016/S0092-8674(01)00524-4
  52. Mead, J., McCord, R., Youngster, L., Sharma, M., Gartenberg, M.R., and Vershon, A.K. (2007). Swapping the gene-specific and regional silencing specificities of the Hst1 and Sir2 histone deacetylases. Mol. Cell. Biol. 27, 2466-2475 https://doi.org/10.1128/MCB.01641-06
  53. Meng, E.C., Pettersen, E.F., Couch, G.S., Huang, C.C., and Ferrin, T.E. (2006). Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics 7, 339 https://doi.org/10.1186/1471-2105-7-339
  54. Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., and Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16, 4623-4635
  55. Michishita, E., McCord, R.A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T.L., Barrett, J.C., et al. (2008). SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452, 492-496 https://doi.org/10.1038/nature06736
  56. Min, J., Landry, J., Sternglanz, R., and Xu, R.M. (2001). Crystal structure of a SIR2 homolog-NAD complex. Cell 105, 269-279 https://doi.org/10.1016/S0092-8674(01)00317-8
  57. Motta, M.C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and Guarente, L. (2004). Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551-563 https://doi.org/10.1016/S0092-8674(04)00126-6
  58. Newman, B.L., Lundblad, J.R., Chen, Y., and Smolik, S.M. (2002). A Drosophila homologue of Sir2 modifies position-effect variegation but does not affect life span. Genetics 162, 1675-1685
  59. North, B.J., and Verdin, E. (2004). Sirtuins: Sir2-related NADdependent protein deacetylases. Genome Biol. 5, 224 https://doi.org/10.1186/gb-2004-5-5-224
  60. Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S.K., Hartlerode, A., Stegmuller, J., Hafner, A., Loerch, P., et al. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907-918 https://doi.org/10.1016/j.cell.2008.10.025
  61. Pankow, S., and Bamberger, C. (2007). The p53 tumor suppressorlike protein nvp63 mediates selective germ cell death in the sea anemone Nematostella vectensis. PLoS ONE 2, e782 https://doi.org/10.1371/journal.pone.0000782
  62. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612 https://doi.org/10.1002/jcc.20084
  63. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado, D.O., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776 https://doi.org/10.1038/nature02583
  64. Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F., Haendeler, J., Mione, M., Dejana, E., Alt, F.W., et al. (2007). SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 21, 2644-2658 https://doi.org/10.1101/gad.435107
  65. Pruitt, K., Zinn, R.L., Ohm, J.E., McGarvey, K.M., Kang, S.H., Watkins, D.N., Herman, J.G., and Baylin, S.B. (2006). Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2, e40 https://doi.org/10.1371/journal.pgen.0020040
  66. Rensing, S.A., Lang, D., Zimmer, A.D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P.F., Lindquist, E.A., Kamisugi, Y., et al. (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69 https://doi.org/10.1126/science.1150646
  67. Richards, S., Gibbs, R.A., Weinstock, G.M., Brown, S.J., Denell, R., Beeman, R.W., Gibbs, R., Bucher, G., Friedrich, M., Grimmelikhuijzen, C.J., et al. (2008). The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949-955 https://doi.org/10.1038/nature06784
  68. Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118 https://doi.org/10.1038/nature03354
  69. Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998-16003 https://doi.org/10.1073/pnas.0404184101
  70. Rosenberg, M.I., and Parkhurst, S.M. (2002). Drosophila Sir2 is required for heterochromatic silencing and by euchromatic Hairy/E(Spl). bHLH repressors in segmentation and sex determination. Cell 109, 447-458 https://doi.org/10.1016/S0092-8674(02)00732-8
  71. Sauve, A.A., Celic, I., Avalos, J., Deng, H., Boeke, J.D., and Schramm, V.L. (2001). Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40, 15456-15463 https://doi.org/10.1021/bi011858j
  72. Schlicker, C., Gertz, M., Papatheodorou, P., Kachholz, B., Becker, C.F., and Steegborn, C. (2008). Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 382, 790-801 https://doi.org/10.1016/j.jmb.2008.07.048
  73. Schwer, B., and Verdin, E. (2008). Conserved metabolic regulatory functions of sirtuins. Cell Metab. 7, 104-112 https://doi.org/10.1016/j.cmet.2007.11.006
  74. Schwer, B., Bunkenborg, J., Verdin, R.O., Andersen, J.S., and Verdin, E. (2006). Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. USA 103, 10224-10229 https://doi.org/10.1073/pnas.0603968103
  75. Shou, W., Seol, J.H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z.W., Jang, J., Shevchenko, A., Charbonneau, H., and Deshaies, R.J. (1999). Exit from mitosis is triggered by Tem1- dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233-244 https://doi.org/10.1016/S0092-8674(00)80733-3
  76. Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles - a cause of aging in yeast. Cell 91, 1033-1042 https://doi.org/10.1016/S0092-8674(00)80493-6
  77. Smith, J.S., Brachmann, C.B., Celic, I., Kenna, M.A., Muhammad, S., Starai, V.J., Avalos, J.L., Escalante-Semerena, J.C., Grubmeyer, C., Wolberger, C., et al. (2000). A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci USA 97, 6658-6663 https://doi.org/10.1073/pnas.97.12.6658
  78. Solignac, M., Zhang, L., Mougel, F., Li, B., Vautrin, D., Monnerot, M., Cornuet, J.M., Worley, K.C., Weinstock, G.M., and Gibbs, R.A. (2007). The genome of Apis mellifera: dialog between linkage mapping and sequence assembly. Genome Biol. 8, 403 https://doi.org/10.1186/gb-2007-8-3-403
  79. Srivastava, M., Begovic, E., Chapman, J., Putnam, N.H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M.L., et al. (2008). The Trichoplax genome and the nature of placozoans. Nature 454, 955-960 https://doi.org/10.1038/nature07191
  80. Stein, L.D., Bao, Z., Blasiar, D., Blumenthal, T., Brent, M.R., Chen, N., Chinwalla, A., Clarke, L., Clee, C., Coghlan, A., et al. (2003). The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 1, E45 https://doi.org/10.1371/journal.pbio.0000045
  81. Straight, A.F., Shou, W., Dowd, G.J., Turck, C.W., Deshaies, R.J., Johnson, A.D., and Moazed, D. (1999). Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97, 245-256 https://doi.org/10.1016/S0092-8674(00)80734-5
  82. Tanner, K.G., Landry, J., Sternglanz, R., and Denu, J.M. (2000). Silent information regulator 2 family of NAD- dependent histone/ protein deacetylases generates a unique product, 1-Oacetyl- ADP-ribose. Proc. Natl. Acad. Sci. USA 97, 14178-14182 https://doi.org/10.1073/pnas.250422697
  83. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823-6832 https://doi.org/10.1074/jbc.M609554200
  84. Tanny, J.C., and Moazed, D. (2001). Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: Evidence for acetyl transfer from substrate to an NAD breakdown product. Proc. Natl. Acad. Sci. USA 98, 415-420 https://doi.org/10.1073/pnas.031563798
  85. Tanny, J.C., Dowd, G.J., Huang, J., Hilz, H., and Moazed, D. (1999). An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735-745 https://doi.org/10.1016/S0092-8674(00)81671-2
  86. Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230 https://doi.org/10.1038/35065638
  87. Tsang, A.W., and Escalante-Semerena, J.C. (1998). CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide: 5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273, 31788-31794 https://doi.org/10.1074/jbc.273.48.31788
  88. van der Horst, A., Tertoolen, L.G., Vries-Smits, L.M., Frye, R.A., Medema, R.H., and Burgering, B.M. (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2SIRT1. J. Biol. Chem. 279, 28873-28879 https://doi.org/10.1074/jbc.M401138200
  89. Vaquero, A., Scher, M., Lee, D., Erdjument-Bromage, H., Tempst, P., and Reinberg, D. (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16, 93-105 https://doi.org/10.1016/j.molcel.2004.08.031
  90. Vaquero, A., Scher, M.B., Lee, D.H., Sutton, A., Cheng, H.L., Alt, F.W., Serrano, L., Sternglanz, R., and Reinberg, D. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20, 1256-1261 https://doi.org/10.1101/gad.1412706
  91. Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L., and Reinberg, D. (2007). SIRT1 regulates the histone methyltransferase SUV39H1 during heterochromatin formation. Nature 450, 440-444 https://doi.org/10.1038/nature06268
  92. Vaziri, H., Dessain, S.K., Ng, E.E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L., and Weinberg, R.A. (2001). hSIR2(SIRT1). functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159 https://doi.org/10.1016/S0092-8674(01)00527-X
  93. Wang, C., Chen, L., Hou, X., Li, Z., Kabra, N., Ma, Y., Nemoto, S., Finkel, T., Gu, W., Cress, W.D., et al. (2006). Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat. Cell Biol. 8, 1025-1031 https://doi.org/10.1038/ncb1468
  94. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., and Barton, G.J. (2009). Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189-1191 https://doi.org/10.1093/bioinformatics/btp033
  95. Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689 https://doi.org/10.1038/nature02789
  96. Yamamoto, H., Schoonjans, K., and Auwerx, J. (2007). Sirtuin functions in health and disease. Mol. Endocrinol. 21, 1745-1755 https://doi.org/10.1210/me.2007-0079
  97. Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-kappaBdependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380 https://doi.org/10.1038/sj.emboj.7600244
  98. Zhao, K., Chai, X., Clements, A., and Marmorstein, R. (2003a). Structure and autoregulation of the yeast Hst2 homolog of Sir2. Nat. Struct. Biol. 10, 864-871 https://doi.org/10.1038/nsb978
  99. Zhao, K., Chai, X., and Marmorstein, R. (2003b). Structure of the yeast Hst2 protein deacetylase in ternary complex with 2′-Oacetyl ADP ribose and histone peptide. Structure 11, 1403-1411 https://doi.org/10.1016/j.str.2003.09.016
  100. Zhao, K., Harshaw, R., Chai, X., and Marmorstein, R. (2004). Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases. Proc. Natl. Acad. Sci. USA 101, 8563-8568 https://doi.org/10.1073/pnas.0401057101

피인용 문헌

  1. Synthesizing and Salvaging NAD + : Lessons Learned from Chlamydomonas reinhardtii vol.6, pp.9, 2010, https://doi.org/10.1371/journal.pgen.1001105
  2. Discovery of potent, proteolytically stable, and cell permeable human sirtuin peptidomimetic inhibitors containing Nϵ-thioacetyl-lysine vol.1, pp.3, 2009, https://doi.org/10.1039/c0md00089b
  3. Potent sirtuin inhibition bestowed by L-2-amino-7-carboxamidoheptanoic acid (L-ACAH), a Nε-acetyl-lysine analog vol.2, pp.4, 2009, https://doi.org/10.1039/c0md00212g
  4. The Duplicated Deacetylases Sir2 and Hst1 Subfunctionalized by Acquiring Complementary Inactivating Mutations vol.31, pp.16, 2009, https://doi.org/10.1128/mcb.05175-11
  5. The human sirtuin family: Evolutionary divergences and functions vol.5, pp.5, 2009, https://doi.org/10.1186/1479-7364-5-5-485
  6. Pathways for Ischemic Cytoprotection: Role of Sirtuins in Caloric Restriction, Resveratrol, and Ischemic Preconditioning vol.31, pp.4, 2009, https://doi.org/10.1038/jcbfm.2010.229
  7. Functions of the poly(ADP-ribose) polymerase superfamily in plants vol.69, pp.2, 2009, https://doi.org/10.1007/s00018-011-0793-4
  8. Sirtuin 1 and Sirtuin 3: Physiological Modulators of Metabolism vol.92, pp.3, 2009, https://doi.org/10.1152/physrev.00022.2011
  9. Sirtuins of parasitic protozoa: In search of function(s) vol.185, pp.2, 2009, https://doi.org/10.1016/j.molbiopara.2012.08.003
  10. The Deacetylase Sir2 from the Yeast Clavispora lusitaniae Lacks the Evolutionarily Conserved Capacity to Generate Subtelomeric Heterochromatin vol.9, pp.10, 2009, https://doi.org/10.1371/journal.pgen.1003935
  11. Schistosoma mansoni Sirtuins: Characterization and Potential as Chemotherapeutic Targets vol.7, pp.9, 2009, https://doi.org/10.1371/journal.pntd.0002428
  12. The Rice NAD + -Dependent Histone Deacetylase OsSRT1 Targets Preferentially to Stress- and Metabolism-Related Genes and Transposable Elements vol.8, pp.6, 2009, https://doi.org/10.1371/journal.pone.0066807
  13. SIR Proteins and the Assembly of Silent Chromatin in Budding Yeast vol.47, pp.None, 2009, https://doi.org/10.1146/annurev-genet-021313-173730
  14. SIRT6, a protein with many faces vol.14, pp.6, 2009, https://doi.org/10.1007/s10522-013-9478-8
  15. Alternate deacylating specificities of the archaeal sirtuins Sir2Af1 and Sir2Af2 vol.23, pp.12, 2009, https://doi.org/10.1002/pro.2546
  16. Silencing Is Noisy: Population and Cell Level Noise in Telomere-Adjacent Genes Is Dependent on Telomere Position and Sir2 vol.10, pp.7, 2014, https://doi.org/10.1371/journal.pgen.1004436
  17. Epigenetic control of gene function in schistosomes: a source of therapeutic targets? vol.5, pp.None, 2009, https://doi.org/10.3389/fgene.2014.00317
  18. Differential expression of sirtuin family members in the developing, adult, and aged rat brain vol.6, pp.None, 2009, https://doi.org/10.3389/fnagi.2014.00333
  19. C. elegans sirtuin SIR-2.4 and its mammalian homolog SIRT6 in stress response. vol.3, pp.2, 2009, https://doi.org/10.4161/worm.29102
  20. Structural, Kinetic and Proteomic Characterization of Acetyl Phosphate-Dependent Bacterial Protein Acetylation vol.9, pp.4, 2009, https://doi.org/10.1371/journal.pone.0094816
  21. Polyphenols and the Human Brain: Plant “Secondary Metabolite” Ecologic Roles and Endogenous Signaling Functions Drive Benefits vol.5, pp.5, 2014, https://doi.org/10.3945/an.114.006320
  22. Constitutive heterochromatin formation and transcription in mammals vol.8, pp.None, 2009, https://doi.org/10.1186/1756-8935-8-3
  23. SIRT7 and hepatic lipid metabolism vol.3, pp.None, 2009, https://doi.org/10.3389/fcell.2015.00001
  24. Schistosome sirtuins as drug targets vol.7, pp.6, 2009, https://doi.org/10.4155/fmc.15.24
  25. Fluorescence-Based Screening Assays for the NAD+-Dependent Histone Deacetylase smSirt2 from Schistosoma mansoni vol.20, pp.1, 2009, https://doi.org/10.1177/1087057114555307
  26. Expression of the SIRT2 Gene and Its Relationship with Body Size Traits in Qinchuan Cattle ( Bos taurus ) vol.16, pp.2, 2015, https://doi.org/10.3390/ijms16022458
  27. Overexpression of Cytoplasmic Tc SIR2RP1 and Mitochondrial Tc SIR2RP3 Impacts on Trypanosoma cruzi Growth and Cell Invasion vol.9, pp.4, 2009, https://doi.org/10.1371/journal.pntd.0003725
  28. Glycolysis for Microbiome Generation vol.3, pp.3, 2009, https://doi.org/10.1128/microbiolspec.mbp-0014-2014
  29. Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens vol.59, pp.2, 2009, https://doi.org/10.1016/j.molcel.2015.06.013
  30. Local and regional chromatin silencing inCandida glabrata: consequences for adhesion and the response to stress vol.15, pp.6, 2009, https://doi.org/10.1093/femsyr/fov056
  31. Sirt7 Contributes to Myocardial Tissue Repair by Maintaining Transforming Growth Factor-β Signaling Pathway vol.132, pp.12, 2009, https://doi.org/10.1161/circulationaha.114.014821
  32. The role of sirtuins in cellular homeostasis vol.72, pp.3, 2009, https://doi.org/10.1007/s13105-016-0492-6
  33. Anaplasma phagocytophilumincreases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vectorIxodes scapularis vol.11, pp.4, 2009, https://doi.org/10.1080/15592294.2016.1163460
  34. Epigenetics in Schistosomes: What We Know and What We Need Know vol.6, pp.None, 2009, https://doi.org/10.3389/fcimb.2016.00149
  35. Candida albicans repetitive elements display epigenetic diversity and plasticity vol.6, pp.None, 2009, https://doi.org/10.1038/srep22989
  36. Cyclic peptide-based potent human SIRT6 inhibitors vol.14, pp.25, 2009, https://doi.org/10.1039/c5ob02339d
  37. A Selective Cyclic Peptidic Human SIRT5 Inhibitor vol.21, pp.9, 2009, https://doi.org/10.3390/molecules21091217
  38. Sporadic Gene Loss After Duplication Is Associated with Functional Divergence of Sirtuin Deacetylases Among Candida Yeast Species vol.6, pp.10, 2009, https://doi.org/10.1534/g3.116.033845
  39. Cyclic peptide-based potent and selective SIRT½ dual inhibitors harboring Nε-thioacetyl-lysine vol.26, pp.21, 2009, https://doi.org/10.1016/j.bmcl.2016.09.055
  40. Tissue-specific gene expression and fasting regulation of sirtuin family in gilthead sea bream (Sparus aurata) vol.187, pp.1, 2009, https://doi.org/10.1007/s00360-016-1014-0
  41. Thermal treatment of luteolin-7-O-β-glucoside improves its immunomodulatory and antioxidant potencies vol.22, pp.6, 2017, https://doi.org/10.1007/s12192-017-0808-7
  42. Modulation of Replicative Lifespan in Cryptococcus neoformans : Implications for Virulence vol.8, pp.None, 2009, https://doi.org/10.3389/fmicb.2017.00098
  43. Spatio-Temporal Control of Cellular and Organismal Physiology by Sirtuins vol.97, pp.1, 2017, https://doi.org/10.1007/s41745-016-0018-9
  44. SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion vol.25, pp.4, 2009, https://doi.org/10.1016/j.cmet.2017.03.003
  45. Molecular evolutionary patterns of NAD + /Sirtuin aging signaling pathway across taxa vol.12, pp.8, 2017, https://doi.org/10.1371/journal.pone.0182306
  46. Alkylresorcinols activate SIRT1 and delay ageing in Drosophila melanogaster vol.7, pp.None, 2017, https://doi.org/10.1038/srep43679
  47. Sirtuins in the phylum Basidiomycota: A role in virulence in Cryptococcus neoformans vol.7, pp.None, 2009, https://doi.org/10.1038/srep46567
  48. An NAD+-Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium Lactobacillus acidophilus NCFM vol.57, pp.26, 2009, https://doi.org/10.1021/acs.biochem.8b00306
  49. The Role of Sirtuins in Antioxidant and Redox Signaling vol.28, pp.8, 2009, https://doi.org/10.1089/ars.2017.7290
  50. SIRT7 functions in redox homeostasis and cytoskeletal organization during oocyte maturation vol.32, pp.11, 2009, https://doi.org/10.1096/fj.201800078rr
  51. Co-expression Analysis of Sirtuins and Related Metabolic Biomarkers in Juveniles of Gilthead Sea Bream ( Sparus aurata ) With Differences in Growth Performance vol.9, pp.None, 2009, https://doi.org/10.3389/fphys.2018.00608
  52. Differences in Sirtuin Regulation in Response to Calorie Restriction in Cryptococcus neoformans vol.4, pp.1, 2018, https://doi.org/10.3390/jof4010026
  53. Sirt4 is a mitochondrial regulator of metabolism and lifespan in Drosophila melanogaster vol.115, pp.7, 2018, https://doi.org/10.1073/pnas.1720673115
  54. NAD+Biosynthesis and Signaling in Plants vol.37, pp.4, 2009, https://doi.org/10.1080/07352689.2018.1505591
  55. Hsp90 Stabilizes SIRT1 Orthologs in Mammalian Cells and C. elegans vol.19, pp.11, 2009, https://doi.org/10.3390/ijms19113661
  56. Directed evolution of SIRT6 for improved deacylation and glucose homeostasis maintenance vol.8, pp.None, 2018, https://doi.org/10.1038/s41598-018-21887-9
  57. Arginine methylation of SIRT 7 couples glucose sensing with mitochondria biogenesis vol.19, pp.12, 2009, https://doi.org/10.15252/embr.201846377
  58. Nutritional biomarkers: Current view and future perspectives vol.58, pp.18, 2009, https://doi.org/10.1080/10408398.2017.1350136
  59. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging vol.10, pp.None, 2009, https://doi.org/10.3389/fgene.2019.00948
  60. Cyclic Peptide-Based Sirtuin Substrates vol.24, pp.3, 2009, https://doi.org/10.3390/molecules24030424
  61. Unpacking the Pathogen Box-An Open Source Tool for Fighting Neglected Tropical Disease vol.14, pp.4, 2009, https://doi.org/10.1002/cmdc.201800755
  62. Evolution of the Drosophila melanogaster Chromatin Landscape and Its Associated Proteins vol.11, pp.3, 2009, https://doi.org/10.1093/gbe/evz019
  63. Interplay between the bacterial protein deacetylase CobB and the second messenger c‐di‐ GMP vol.38, pp.18, 2019, https://doi.org/10.15252/embj.2018100948
  64. Cyclic Tripeptide-based Potent and Selective Human SIRT5 Inhibitors vol.16, pp.3, 2009, https://doi.org/10.2174/1573406415666190603101937
  65. Structural and functional evidence of bacterial antiphage protection by Thoeris defense system via NAD + degradation vol.11, pp.1, 2009, https://doi.org/10.1038/s41467-020-16703-w
  66. Legionella pneumophila Infection Rewires the Acanthamoeba castellanii Transcriptome, Highlighting a Class of Sirtuin Genes vol.10, pp.None, 2020, https://doi.org/10.3389/fcimb.2020.00428
  67. The Versatility of Sirtuin-1 in Endocrinology and Immunology vol.8, pp.None, 2020, https://doi.org/10.3389/fcell.2020.589016
  68. A Review of Sirtuin Inhibitors in Therapeutics, Pharmaceutics, and Plant Research vol.30, pp.1, 2009, https://doi.org/10.5352/jls.2020.30.1.96
  69. Inhibition of histone acetylation and deacetylation enzymes affects longevity, development, and fecundity in the pea aphid (Acyrthosiphon pisum) vol.103, pp.3, 2020, https://doi.org/10.1002/arch.21614
  70. Epigenetics and genome stability vol.31, pp.5, 2009, https://doi.org/10.1007/s00335-020-09836-2
  71. SIRT1 Regulation in Ageing and Obesity vol.188, pp.None, 2009, https://doi.org/10.1016/j.mad.2020.111249
  72. Activation of Sirtuin 2 Inhibitors Employing Photoswitchable Geometry and Aqueous Solubility vol.15, pp.15, 2009, https://doi.org/10.1002/cmdc.202000148
  73. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators vol.295, pp.32, 2020, https://doi.org/10.1074/jbc.rev120.011438
  74. Local DNA methylation helps to regulate muscle sirtuin 1 gene expression across seasons and advancing age in gilthead sea bream ( Sparus aurata ) vol.17, pp.None, 2009, https://doi.org/10.1186/s12983-020-00361-1
  75. Sirtuins: Enzymes with multidirectional catalytic activity vol.75, pp.None, 2009, https://doi.org/10.5604/01.3001.0014.7866
  76. Post-translational Acetylation Control of Cardiac Energy Metabolism vol.8, pp.None, 2009, https://doi.org/10.3389/fcvm.2021.723996
  77. Bacterial Sirtuins Overview: An Open Niche to Explore vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.744416
  78. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective vol.12, pp.None, 2009, https://doi.org/10.3389/fmicb.2021.757179
  79. The Pleiotropic Function of Human Sirtuins as Modulators of Metabolic Pathways and Viral Infections vol.10, pp.2, 2021, https://doi.org/10.3390/cells10020460
  80. Human SIRT1 Multispecificity Is Modulated by Active-Site Vicinity Substitutions during Natural Evolution vol.38, pp.2, 2009, https://doi.org/10.1093/molbev/msaa244
  81. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review vol.10, pp.3, 2009, https://doi.org/10.3390/biology10030194
  82. The Mystery of Extramitochondrial Proteins Lysine Succinylation vol.22, pp.11, 2009, https://doi.org/10.3390/ijms22116085
  83. Genetic Analysis of Sirtuin Deacetylases in Hyphal Growth of Candida albicans vol.6, pp.3, 2009, https://doi.org/10.1128/msphere.00053-21
  84. Energy Metabolism Focused Analysis of Sexual Dimorphism in Biological Aging and Hypothesized Sex-specificity in Sirtuin Dependency vol.60, pp.None, 2021, https://doi.org/10.1016/j.mito.2021.07.007
  85. A fungal sirtuin modulates development and virulence in the insect pathogen, Beauveria bassiana vol.23, pp.9, 2009, https://doi.org/10.1111/1462-2920.15497
  86. Sirtuins and Autophagy in Age-Associated Neurodegenerative Diseases: Lessons from the C. elegans Model vol.22, pp.22, 2009, https://doi.org/10.3390/ijms222212263