• Title/Summary/Keyword: Tracking filter

Search Result 1,014, Processing Time 0.027 seconds

칼만필터링을 사용한 목표물 추적시스템의 설계 (Design of Target Tracking System using Kalman Filtering)

  • 김종화;이만형
    • 대한전기학회논문지
    • /
    • 제37권9호
    • /
    • pp.636-645
    • /
    • 1988
  • A new filter algorithm is suggested improving structurally the conventional extended Kalman filter of which the performance is dependent on the selection of the reference axes, by use of line-of-sight axes and gain rotation technique. The implementation method using microcomputer which implements tracking Kalman filter is introduced in terms of hardware and software. Then, through the simulation the performance of suggested filter is compared with that of conventional extended Kalman filter and the possibility of the real time tracking of moving target is investigated.

  • PDF

기동 플랫폼 탑재 레이다 추적 성능 향상을 위한 항법 필터 설계 (Design of Navigation Filter to Improve Tracking Performance in Radar with a Moving Platform)

  • 조형준;문현욱;안지훈;손성환
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권3호
    • /
    • pp.115-121
    • /
    • 2024
  • 기동 플랫폼에 탑재된 레이다는 플랫폼이 이동 및 회전함에 따라 레이다의 좌표계 상태도 같이 변화한다. 이때, 추적을 수행하기 위하여 센서로부터 측정된 플랫폼의 상태 정보를 이용하여 표적의 좌표를 변환하게 되며 센서의 잡음, 통신 지연, 센서 갱신 주기와 같은 원인으로 인하여 추적 성능이 저하될 수 있다. 본 논문에서는 센서의 오차로 인한 추적 성능 저하를 최소화하기 위하여 기동 플랫폼의 상태정보를 추정하기 위한 항법 필터를 설계하고 모의 시험을 통해 항법 필터 적용을 통한 추적 성능 개선 효과를 분석하였다. 이러한 항법 필터 설계를 위하여 3가지의 필터 알고리즘을 분석 및 적용하여 각 필터별 플랫폼 위치 및 자세 성능 개선 효과를 확인하였고 가장 높은 성능의 필터 알고리즘을 적용하여 설계된 항법 필터를 추적 모의 시험에 적용하여 항법 필터 적용 전후의 추적 성능 개선을 확인하였다.

퍼지 게인을 갖는 칼만필터를 이용한 IMM 기법 (IMM Method Using Kalman Filter with Fuzzy Gain)

  • 노선영;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.425-428
    • /
    • 2006
  • In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.

  • PDF

Basic Study of a Comparison of the Performances of the α-β-γ Filter and the Kalman Filter Regarding Their Use in the ARPA-System Tracking Module of High-Dynamic Warships

  • Njonjo, Anne Wanjiru;Pan, Bao-Feng;Jeong, Tae-Gweon
    • 한국항해항만학회지
    • /
    • 제41권5호
    • /
    • pp.269-276
    • /
    • 2017
  • "Tracking" here refers to the estimation of a moving object with some degree of accuracy where at least one measurement is given. The measurement, which is the sensor-obtained output, contains systemic errors and errors that are due to the surrounding environment. Tracking filters play the key role of the target-state estimation after the updating of the tracking system; therefore, the type of filter that is used for the conduction of the estimations is crucial in the determining of the reliability of the updated value, and this is especially true since the performances of different filters vary when they are subjected to different environmental and initial conditions. The purpose of this paper is the conduction of a comparison between the performances of the ${\alpha}-{\beta}-{\gamma}$ filter and the Kalman filter regarding an ARPA-system tracking module that is used on board high-dynamic warships. The comparison is based on the capability of each filter to reduce noise and maintain a stable response. The residual error is computed from the difference between the true and predicted positions and the true and estimated positions for the given sample. The results indicate that the tracking accuracy of the Kalman filter is higher compared with that of the optimal ${\alpha}-{\beta}-{\gamma}$ filter; however, the response of the optimal ${\alpha}-{\beta}-{\gamma}$ filter is more stable.

낮은 프레임률 영상에서 파티클 필터의 추적 성능 개선 (Improvement of Tracking Performance of Particle Filter in Low Frame Rate Video)

  • 송종관
    • 한국전자통신학회논문지
    • /
    • 제9권2호
    • /
    • pp.143-148
    • /
    • 2014
  • 파티클 필터는 비선형 비가우시안 추정 문제에 매우 효과적인 수단으로 비디오 영상에서 객체를 추적하는 경우에 널리 이용되어왔다. 하지만 객체의 이동이 심한 경우 객체의 추적을 위해서는 매우 많은 개수의 파티클이 있어야 하므로 계산량이 크게 증가하게 된다. 본 논문에서는 프레임간의 객체 이동이 상당히 크게 이루어지는 low frame rate(LPR) 비디오에서 차량의 추적을 위하여 모션 벡터를 이용한 개선된 파티클 필터 추적 방법을 제안하고 실험을 통하여 성능을 평가하였다. 제안한 파티클 필터에서는 selection 단계와 observe 단계의 두 단계에서 모션 벡터를 적용하였다. 실험 결과 제안한 방법은 LPR 영상에서 기존의 파티클 필터가 객체의 추적에 실패하는 경우에도 성공적 추적이 가능하며, 추적의 정확도 또한 향상되었음을 보여주었다.

A Target Tracking Based on Bearing and Range Measurement With Unknown Noise Statistics

  • Lim, Jaechan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1520-1529
    • /
    • 2013
  • In this paper, we propose and assess the performance of "H infinity filter ($H_{\infty}$, HIF)" and "cost reference particle filter (CRPF)" in the problem of tracking a target based on the measurements of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that we do not need to know the noise statistics of the problem in their applications. The performance of the extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise information is perfectly known for the applications of the EKF. Simulation results show that CRPF outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically varying and nonlinearly modeled states with unknown noise statistics.

퍼지모델 기반 칼만 필터를 이용한 레이다 표적 추적 (Radar Tracking Using a Fuzzy-Model-Based Kalman Filter)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.303-306
    • /
    • 2003
  • In radar tracking, since the sensor measures range, azimuth and elevation angle of a target, the measurement equation is nonlinear and the extended Kalman filter (EKF) is applied to nonlinear estimation. The conventional EKF has been widely used as a nonlinear filter for radar tracking, but the considerably large measurement error due to the linearization of nonlinear function in highly nonlinear situations may deteriorate the performance of the EKF To solve this problem, a fuzzy-model-based Kalman filter (FMBKF) is proposed for radar tracking. The FMBKF uses a local model approximation based on a TS fuzzy model instead of a Jacobian matrix to linearize nonlinear measurement equation. The hybrid GA and RLS method is used to identify the premise and the consequent parameters and the rule numbers of this TS fuzzy model. In two-dimensional radar tracking problem, the proposed method is compared with the conventional EKF.

  • PDF

레이다 시선 측정치를 활용하는 선형 표적 추적필터 기반 함포 사격제원계산장치 성능향상 방법 (Performance Improvement Approach to Naval Gun Fire Control System Based on Linear Target Tracking Filter with Radar Line-of-sight Measurements)

  • 서의석
    • 한국군사과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.446-456
    • /
    • 2024
  • This paper addresses a novel approach to performance enhancement of the naval gun fire control system(FCS) by using the projectile tracking filter without any distortion of radar measurements. Under the assumption that the maneuvering between the projectile and the ship equipped with the radar is not quite large, this method is based on the concept of polar-coordinate target tracking, which separates the range estimation filter and the direction cosine estimation filter. Note that using polar-coordinates allows tracking to be performed in the same coordinate system from which the radar line-of-sight(LOS) measurements are obtained, unlike the conventional tracking process in Cartesian. Also, it is easy to implement in real-time and guarantees consistent estimates due to its linear filter structure. With the help of the above method, therefore, the proposed filter is able to improve the overall performance of FCS which requires stability of projectile estimates within a short engagement time. The effectiveness of the presented scheme is validated through computer simulations.

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

Accelerating particle filter-based object tracking algorithms using parallel programming

  • Truong, Mai Thanh Nhat;Kim, Sanghoon
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.469-470
    • /
    • 2018
  • Object tracking is a common task in computer vision, an essential part of various vision-based applications. After several years of development, object tracking in video is still a challenging problem because of various visual properties of objects and surrounding environment. Particle filter is a well-known technique among common approaches, has been proven its effectiveness in dealing with difficulties in object tracking. However, particle filter is a high-complexity algorithms, which is an severe disadvantage because object tracking algorithms are required to run in real time. In this research, we utilize parallel programming to accelerate particle filter-based object tracking algorithms. Experimental results showed that our approach reduced the execution time significantly.