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A Target Tracking Based on Bearing and Range Measurement  
With Unknown Noise Statistics 

 
 

Jaechan Lim† 
 

Abstract – In this paper, we propose and assess the performance of “H infinity filter ( H∞ , HIF)” and 
“cost reference particle filter (CRPF)” in the problem of tracking a target based on the measurements 
of the range and the bearing of the target. HIF and CRPF have the common advantageous feature that 
we do not need to know the noise statistics of the problem in their applications. The performance of the 
extended Kalman filter (EKF) is also compared with that of the proposed filters, but the noise 
information is perfectly known for the applications of the EKF. Simulation results show that CRPF 
outperforms HIF, and is more robust because the tracking of HIF diverges sometimes, particularly 
when the target track is highly nonlinear. Interestingly, when the tracking of HIF diverges, the tracking 
of the EKF also tends to deviate significantly from the true track for the same target track. Therefore, 
CRPF is very effective and appropriate approach to the problems of highly nonlinear model, especially 
when the noise statistics are unknown. Nonetheless, HIF also can be applied to the problem of 
timevarying state estimation as the EKF, particularly for the case when the noise statistcs are unknown. 
This paper provides a good example of how to apply CRPF and HIF to the estimation of dynamically 
varying and nonlinearly modeled states with unknown noise statistics. 
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1. Introduction 
 

For many problems in engineering or statistical science, 
we can model and describe them by the dynamic state 
system (DSS) where the states of interest are correlated in 
time or space. In most cases, the dynamically varying 
states are correlated with time, while the other case can be 
found usually in the estimation problems of consecutive 
image pixels. Based on the DSS model, there are a number of 
approaches for estimating the states sequentially in time or 
space. The Kalman filter is an outstanding approach, and is 
the optimal method when the model is linear and the noise 
of the problem is the Gaussian. Its extended version 
employing Taylor series, i.e. the extended Kalman filter is 
also successfully applied to non-linear problems [1-4]. 
However, our concern in this paper is to solve the problem 
with unknown noise statistics regardless of weather the 
noise is Gaussian or not, particularly for a non-linear 
model. There are two approaches related with this concern, 
i.e. “H infinity filter ( H∞ , HIF) [5]” and “cost reference 
particle filter (CRPF) [6, 7].” CRPF has been newly 
developed in particle filtering framework [8], and easily 
adopted to non-linear problems like standard particle filter 
(SPF) because we do not have to compute the Jacobian, as 
opposed to the cases of the EKF and HIF. The computational 

complexity of HIF is very similar to that of the EKF whereas 
CRPF is much more computationally complex.  

In this paper, we track a single target’s location and 
velocity in two dimensional space where a target is moving 
with random acceleration. We apply the EKF, HIF, and 
CRPF based on observations, i.e. the range and the bearing 
of the target measured at the origin of the coordinate 
system. Fig. 1 describes the range and the bearing of the 
target measured at the origin of the coordinate. When we 
apply the EKF, the noise information of the problem is 
perfectly known. We consider two scenarios when we 
apply noises for the simulations. In scenario I, we apply 
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Fig. 1. The range ( R ) and the bearing ( β ) measurement 

of a target in motion 
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only a single Gaussian noise, and apply a mixture Gaussian 
noise in scenario II. The tracking of HIF tends to diverge 
when a target track is highly non-linear (i.e. the 
acceleration is large), and its performance becomes worse in 
the scenario II. Interestingly, the EKF also shows a bad 
performance or its tracking deviates significantly from the 
true target track when HIF’s tracking diverges even though 
the noise information is given for the EKF. The tracking of 
CRPF never diverges nor deviates significantly from the 
true track in any scenarios. When we track a same identical 
track 300 times repeatedly without any diverging tracking, 
the EKF shows the best result to which CRPF is the second, 
and HIF shows the worst performance. Overall, CRPF is 
more robust than the other two methods, and outperforms 
HIF in any circumstances. Therefore, as the SPF usually 
outperforms the EKF in significantly non-linear problems, 
CRPF outperforms HIF for the problems with unknown 
noise statistics. In other words, SPF is to the EKF what 
CRPF is to HIF with the difference of whether the noise 
statistics are known or not. 

In summary, CRPF was initially developed in [6], and is 
still not well known to many researchers even in related 
areas. Therefore, we propose this approach to the highly 
nonlinear problem that is investigated in this paper, and 
show outperforming result over the EKF even with a 
disadvantage of unknown noise statistics. This superior 
result of CRPF may not occur in all nonlinear problems; 
therefore, CRPF is robust particularly in highly nonlinear 
problems. We also compare the performance of CRPF with 
that of HIF which has the same feature of non-necessity of 
the knowledge of noise statistics in its applications, and 
show superior performance of CRPF. In the future, beyond 
the result of this paper, we will be able to obtain outper-
forming results of CRPF in many nonlinear problems 
where HIF is applied as the state of the art approach  

For readability facilitation of the paper, the list of 
abbreviations used in this paper is as follows: 

 
 

2. System Model 
 
We want to track a single target which is moving in a 

two dimensional space with random acceleration. The 
direction of the target is subject to the acceleration which is 
determined by the process noise in the DSS equation. The 
observed measurements are the range and the bearing of 
the target measured at the origin of the coordinate system. 
The DSS equation is expressed as follows. 
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 (1) 

where r, v, u, and (x, y) denote the location, the velocity, 
the acceleration, and coordinates, respectively. T is the 
sampling period, and k is the time index. Therefore, the 
dynamically time-varying state is composed of four 
elements, i.e. 2-D location and 2-D acceleration coordinates. 
The state noise of the location coordinate is zero whereas 
that of the acceleration is subjected to a random process of 

ku . The range and the bearing compose the measurement 
equation, which is highly non-linear, and described as 
follows: 

 
 [ ] [ ]Tk k k k k kz h s w R  w= + = β +  (2) 
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and the measurement noise is, , ,[ ]T

k R k kw w  wβ= . Therefore, 
the state ks  is sequentially estimated based on the observed 
information kz  by applying the approaches. 

 
 

3. Filtering Methods 
 
We investigate three approaches for tracking a target in 

this non-linear problem. When we apply the EKF and 
extended HIF, we have to compute the Jacobian of the 
measurement equation to approximate it into linear form 
whereas we do not need to compute in CRPF. 

 
3.1 Extended kalman filtering 

 
In many statistical estimation problems of scientific 

engineering, parameters of interest to be estimated are 
dynamically varying in time or space with some statistical 
features. In this case, the signal is not stationary anymore 
and the parameter needs to be estimated sequentially. If it 
is assumed that the parameter is varying with some 
statistical features, the state of varying parameters is 
modeled by DSS. Autoregressive or/and moving average 
models also can be included in this dynamic model, but 
DSS model is not limited to these stationary processes. 
Wiener filter might be optimal for this stationary scalar 
parameter estimation, but, in practice we encounter non-
stationary scenario cases. Although classical maximum 
likelihood approach is asymptotically optimal estimator for 
the static parameter estimation, it is not pertinent for 
dynamically varying parameters, particularly in non-
stationary mode. The Kalman filter is optimal sequential 
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minimum mean square estimator for the estimation of non-
stationary vector signals if the signals are linear jointly 
Gaussian. Unfortunately, the most estimation problems we 
encounter in practice are not simply linear; therefore, 
usually the Kalman filter is extended by using Taylor 
expansion for the second order linear approximation of any 
functions. Furthermore, the computation of Jacobian that 
causes relatively high computational complexity will be 
required if the estimated state is a vector rather than a 
scalar as in the case of the problem in this paper. 

 
3.2 Extended H∞  filtering 

 
HIF has an advantageous feature: it does not require the 

noise statistics in its application. The filtering scheme of 
HIF is similar to that of the EKF. However, whereas the 
mean square error is minimized in the EKF (EKF is a kind 
of minimum mean square error estimator), the worst case 
error (or maximized error) is minimized in the EHF. This is 
why the Kalman filter may also be called H2 filter. More 
specifically, the norm or the cost function is defined in the 
H∞  filtering, and the maximum norm, which is specifically 
called the H∞  norm, is minimized. Based on the system 
Eqs. (1) and (2), H∞  filter estimates ks with uniformly 
small errors, given arbitrary kw , ku , and 0s . This idea is 
very similar to the case of the zero-sum game where 
maximum benefit-loss is minimized. Therefore, the cost 
function related to the zero-sum game is defined as follows 
[5] based on the system Eqs. (1) and (2): 
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where kP , kW  and kV  are the weight parameters that are 
positive definite matrices; N is the number of total time 
steps. The vector norm is denoted by   ⋅ , and 1

2

k
k W

 u   −  is 
defined 1T

k ku W u− . If it is known that the second element of 
( )w k  is small, then (2,2)kV is chosen to be small 

compared to other elements. 
Direct minimization of J is not tractable; therefore, the 

performance bound is introduced, and it satisfies  
 

 1J −< γ   (6) 
 
Then, J′ is defined as 
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and, the problem becomes a matter of solving the following 
minimax problem: 

 ( )
0ˆ , ,

min max '
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The H∞  filter reduces to the KF when: γ = ∞ , and the 

true covariance matrices of the parameters are selected for 
0P , kW  and kV ; therefore, the Kalman filter does not 

guarantee any bound for the cost function of (6) from the 
H∞  filter point of view. We describe the essential steps of 
the extended H∞  filtering for the problem here, and more 
details and genera descriptions about HIF can be found in 
[5, 9, 10]. The following is the summarized steps when 
HIF is applied to track a target: 

1) Initialize the noise attenuation level ( γ ), the initial 
estimate ( 0ŝ ), and the weight parameters. 

2) For n = 1: N−1, recursively take the following steps. 
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time invariant in the problem. 
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In the steps, we can compute the Jacobian of the 

measurement equation as 
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and the same Jacobian is used when we apply the EKF to 
the problem. When the noise attenuation level γ  is 
selected, we have to be very careful, especially it has to 
satisfy the condition that 
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γ < +  to maintain 0kP >  [9]. 

 
3.3 Cost reference particle filter 

 
The Cost reference particle filter (CRPF) also has the 

same feature as HIF that it does not require the prior 
information about the noise distributions of the “state” and 
the “measurement” equations [11]. The dynamic state system 
that describes the hidden state s and observed measurement 
z with zero mean and additive noise processes of u and w 
at time k is expressed as follows. 
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 1( )k k ks g s u−= + , (10) 

 ( )k k kz h s w= +  (11) 
 

where g(·) and h(·) are the given state transition and the 
observation function, respectively. In CRPF algorithm, we 
need to define a couple of important functions, i.e. the cost 
function and the risk function. These functions are adopted 
as the measure of the quality of particles in the algorithm. 
The cost function needs to satisfy strictly convex with 
respect to ks  to avoid the ambiguities in estimates and in 
the resampling step. The risk function needs to be simple 
and highly tractable in computation for practical imple-
mentation of the algorithm. The cost function in CRPF, 
which is of the recursive additive structure and corresponds 
to the “weight” in the SPF is defined as 

 
 0: 1: 0: 1 1: 1( | , ) ( | , ) ( | )k k k k k kC s z C s z C s z− −λ = λ λ + Δ   (12) 
 
where λ  is the forgetting factor (0 1)≤ λ ≤  which makes 
it possible to adaptively change the amount of 
contributions of past particles in evaluating the cost 
function, and ΔC is the “incremental cost function” which 
gives the accuracy of the estimate of ks  given kz . The 
cost function is a measure of “estimate quality” like the 
weight as in PF. Similarly to PF, the cost-based random 
measure is represented by a set of particles and associated 
costs as, 
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Where 
 

 ( ) ( )
0:k 1:(s | , ),i i

k kC C z= λ  (14) 
 
i is the particle index, and M is the number of particles. 
The “risk function” is defined in CRPF as 

 
 1 1( | ) ( [s ] | ) ( ( ) | ).k k k k k kR s z C E z C g s z− −= Δ = Δ   (15) 
 
where 1[ ] (s )k kE s g −= . This can be computed by 

1[g (s )] q
k kz h −−  where q ≥ 1. The risk function measures 

the adequacy of the estimate, 1ks −  given the 
observation kz . Also, the risk function is a prediction of the 
cost increment, ( , )k kC s zΔ  (can be computed by 

( ) q
k kz h s− ). Based on these definitions, the sequential 

algorithm proceeds recursively repeating the steps of “risk 
evaluation”, “resampling”, “particle propagation”, and 
updating the cost with time. The steps are summarized in 
Table 1. CRPF can be easily adopted for the target tracking 
problem based on (1) and (2). The function g(·) is linear, 
and is equal to A in the problem. 

 

Table 1. Cost reference particle filter algorithm 

Initialization for i=1, ..., M, generate ( )
0 0 0~ ( )is p s , and 
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Recursive update for k=1, ..., K 

(1) Compute, (for i= 1, ..., K) 
( ) ( ) ( )

1 1[g(s )]
qi i i

k k k kR C z h− −= λ + −  for 1q ≥ , and PMF, 

( ) ( )ˆ ( )i i
k kRπ ∝ μ = ( ) ( )

1

1

( min )
M

i i
k k i

R R⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

β

=
− +δ  

(2) Selection, or resampling { }( ) ( )
1 1 1

1

ˆˆ ˆ ,
M

i i
k k k

i
 s   C  − − −

=
Ξ =  

according to ( )ˆ i
kπ  where " ^ " denotes resampled 

version of the particle set. 
(3) Particle propagation (for i=1, ..., M) 

[ ]( )( ) ( ) (i) 2,( )
1 1 1ˆ~ ( | ) g(s ) ,i i i

k k k k k k ss    p s s   N   I  − − −= σ  

where 2( , b )N a  denotes a Gaussian distribution 
with the mean of a  and the variance of 2b ,  

2,( ) 2,( )
.11

2
( ) ( )

1ˆ(s )

[ ]
ki i

k kk

i i
k ks  g  

k dim x−−

−−

×σ = σ +  
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3.4 Discussion 

 
While the information of the noise statistics of the state 

and the measurement is not required for HIF and CRPF, we 
need to tune a number of parameters. Particularly, the 
performance bound γ  and the initial variance of the 
propagation density 2,( )

0
iσ  are crucial factors for the 

performance of HIF [9] and CRPF, respectively. Whereas 
2,( )i
kσ  is adjusted online unless an unduly large or small 
2,( )
0

iσ  is selected, a static value of γ  needs to be carefully 
selected for enhanced performance of HIF. Before we 
assess the performance of the proposed approaches, we 
perform extensive preliminary simulations of tuning 
process for parameters setting. On the other hand, tuning 
process is not required for the EKF that is applied with 
exactly known noise statistics. 

 
 

4. Simulations 
 
We apply the proposed methods and the EKF for 

tracking a target in a two dimensional space based on the 
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model of (1) and (2). Sampling period, 1T = , and the 
initial true state of the target is 0 [10 5 0.2 0.2]Ts    = − − . 
The given initial estimate of the state for all methods is 

0ˆ [5 ]Ts  5 0 0= . Diverse variance scenarios of uncorrelated 
noises for the acceleration (in both directions), the range, 
and the bearing are investigated when a single Gaussian 
is applied. When a mixture Gaussian is applied, , ~x yu  

40.1 (0,1) 4 10N − ⋅⋅ + ×  
5(0, 1) 2.5 10 (0, 1),N N−+ ×  ~ 0.1 (0, 1) 0.04Rw N⋅ + ⋅  

5(0, 1) 2.5 10 (0, 1)N N−+ × ⋅ and ~ 0.1 (0, 1) 4w Nβ ⋅ + ×  
410− ⋅ 7(0,1) 1.6 10 (0,1)N N−+ × ⋅ where 2( , )N a b  denotes 

the Gaussian distribution with the mean of a  and the 
variance of 2b . The given initial covariance for the EKF is 
diag(1 1 1 1) where “diag” denotes the diagonal matrix 
with the diagonal elements in the parenthesis, and the noise 
statistics are perfectly known when we apply the EKF. The 
parameters for HIF are; 0.01, V (1 ),diag  1γ = =  and 

0P (0 0 1 1)diag= , and (0 0 1 1)W diag= . The value for 
the performance bound γ  is selected after extensive 
tuning process. We run 10,000 simulations with various 
values of γ  and diverse noise scenarios: 1000,10−γ =  

3 2,10 ,10 ;− − variances of 0.01,0.1,1;wβ =  variances of 
0.1,1,5;Rw =  variances of , 0.001, 0.01, 0.1x yu = . The 

results of tuning process are shown in Figs. 2-3. Overall, 
we obtain similar results such as Fig. 2 regardless of the 
scenarios except for the scenario that results in Fig. 3 
where the noise variance scenario is (0.1,0.1,0.1)  for 

,(w , , )R x yw uβ . HIF shows significantly poor performance 
when 0.01  is employed for γ  as shown in Fig. 3. 
Except for that scenario, HIF shows similar or better 
performance when 0.001 is selected for γ  compared to 
that when the other values are employed. Therefore, we 
select 0.001 for γ  for entire performance assessment. 

We also perform preliminary tuning process for CRPF. 
The performance of CRPF highly relies on the initial variance  

of propagation density 2,( )
0

iσ = 2,( ) 2,( ) 2,( ) 2,( )
0,(1) 0,(2) 0,(3) 0,(4) .

Ti i i i   ⎡ ⎤σ σ σ σ⎣ ⎦   

We run 500 simulations with various values of 2,( )
0

iσ  and 
diverse noise scenarios: 2,( )

0,(1,2) 1,5,10;iσ =  2,( )
0,(3,4) 0.1,1,5;iσ =  

variances of 0.01,0.1;wβ = variances of 0.1,1;Rw =  
variances of , 0.001,0.01.x yu =  The result for various 
scenarios are summarized in Table 2. In the table, we  
specifies values of 2,( )

0,(1,2)
iσ  that result in competitive 

performance with respect to the variance set of 
( )2,( )

0,(3,4), , i
Rw wβ σ  in addition to the optimal combination of 

the elements of 2,( )
0

iσ . We can note that 5 can be used for  

Fig. 2. Tuning γ . Performance of H infinity filter with 
various values of γ . 

Table 2. Tuning initial variance of propagation density, 2,( )

0

iσ . The variance of each scenario is in the order of 
2,( )

0,(3,4 ),( , , , ).i

R x yw w uβ σ  
 Optimal combination of 2,( )

0

iσ  
Noise scenario 1. (0.01 0.1 0.001 0.1) 2. (0.01 0.1 0.001 1) 3. (0.01 0.1 0.001 5) 

2,( )

0,(1,2)

iσ  1, 5 & 10 1, 5 & 10 1, 5 & 10 [ ]T1 1 0.1 0.1  

Noise scenario 4. (0.01 0.1 0.01 0.1) 5. (0.01 0.1 0.01 1) 5. (0.01 0.1 0.01 5) 
2,( )

0,(1,2)

iσ  5 & 10 5 & 10 5 & 10 [ ]T(5 or 10) (5 or 10) 0.1 0.1  

Noise scenario 7. (0.01 1 0.001 0.1) 8. (0.01 1 0.001 1) 9. (0.01 1 0.001 5) 
2,( )

0,(1,2)

iσ  1, 5 & 10 1, 5 & 10 1, 5 & 10 [ ]T(5 or 10) (5 or 10) 5 5  

Noise scenario 10. (0.01 1 0.01 0.1) 11. (0.01 1 0.01 1) 12. (0.01 1 0.01 5) 
2,( )

0,(1,2)

iσ  5 & 10 5 & 10 5 & 10 [ ]T10 10 1 1  

Noise scenario 13. (0.1 0.1 0.001 0.1) 14. (0.1 0.1 0.001 1) 15. (0.1 0.1 0.001 5) 
2,( )

0,(1,2)

iσ  1, 5 & 10 1, 5 & 10 1, 5 & 10 [ ]T1 1 1 1  

Noise scenario 16. (0.1 0.1 0.001 0.1) 17. (0.1 0.1 0.001 1) 18. (0.1 0.1 0.001 5) 
2,( )

0,(1,2)

iσ  5 & 10 5 & 10 5 & 10 [ ]T(5 or 10) (5 or 10) 0.1 0.1  

Noise scenario 19. (0.1 1 0.001 0.1) 20. (0.1 1 0.001 1) 21. (0.1 1 0.001 5) 
2,( )

0,(1,2)

iσ  1, 5 & 10 1, 5 & 10 1, 5 & 10 [ ]T1 1 0.1 0.1  

Noise scenario 22. (0.1 1 0.01 0.1) 23. (0.1 1 0.01 1) 24. (0.1 1 0.01 5) 
2,( )

0,(1,2)

iσ  5 & 10 5 & 10 5 & 10 [ ]T10 10 1 1  
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2,( )
0,(1,2)

iσ  in all scenarios although it does not result in the 
optimal performance for all scenarios. Therefore, in the 
tuning process of q and the forgetting factor λ , we use  

2,( )
0,(1,2) 5iσ =  and 2,( )

0,(3,4) 0.1,1iσ = . We do not use 5 for 
2,( )
0,(3,4)

iσ  because we obtain the optimal performance when 
2,(i)
0,(3,4) 0.1σ =  or 1 except for the scenarios of 7, 8, and 9 as  

shown in Table 2. We run 500 preliminary simulations for 
tuning q and λ  with diverse scenarios: variances of 

0.01,0.1;wβ =  variances of 0.1,1;Rw =  variances of 
, 0.001,0.01;x yu = 1,2;q =  2,( )

0,(1,2) 5;iσ = 2,( )
0,(3,4) 0.1,1;iσ =  λ =  

0,0.95 . The values of λ  and q need to satisfy: 0 1≤ λ ≤  
and 1q ≥ . The value of zero is also considered for λ  
because the mean state estimate (s )mean

k  becomes 
asymptotically optimal in terms of its incremental cost 
when 0λ =  [6]. The selections of q and λ  affect the risk 
and the cost functions that consequently affect the 
performance of CRPF. Fig. 4(a) shows the result when the 

  
(a)     (b) 

   
(c)     (d) 

Fig. 4. Turing q and λ  for CRPF: (a) Variances of 0.01wβ = , 0.1Rw = , , 0.001x yu = ; (b) Variances of 0.01wβ = , 1Rw = , 
, 0.01x yu = ; (c) Variances of 0.1wβ = , 0.1Rw = , , 0.001x yu = ; (d) Variances of 0.01wβ = , 1Rw = , , 0.01x yu = . 

 
Fig. 3. Example of poor performance by H infinity filter

with a bad selection of 0.01γ = . 
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noise variance scenario is 0.01, 0.1, and 0.001 for , Rw wβ  
and , ,x yu  respectively. We have similarly better perfor-
mance when 0.95 is employed than the case when 0 is 
employed for λ  regardless of the values of q and 2,( )

0,(3,4) .
iσ  

We obtained similar results to Fig. 4(a) when the noise 
scenarios are: variances of ,( , , )R x yw w uβ  are (0.01, 0.1, 
0.01), (0.001, 1, 0.01). Fig. 4(b) shows the result when the 
noise variance scenario is (0.01, 1, 0.01). In this scenario, 
we need to select 0,λ =  1,q =  2,( )

0,(3,4) 0.1iσ =  for the best 
performance as shown in Fig. 4(b). Fig. 4(c) shows the 
result when the noise variance scenario is (0.1, 0.1, 0.001), 
and we obtained similar results to Fig. 4(c) for the 
scenarios of (0.1, 0.1, 0.01) and (0.1, 1, 0.001). Fig. 4(d) 
shows the result when the noise variance scenario is (0.1, 1, 
0.01). In this scenario, we had better using 0λ =  for 
better performance. We summarized the scenarios when 
we need to use 0λ =  in Table 3. According to the result 
of preliminary tuning process, we need to employ 

0.95λ =  in most cases; furthermore, the selection of 1 or 
2 for q did not make considerable difference except for the 
specified case in Table 3. Therefore, the parameters for 
CRPF are selected based on the result of preliminary 
tuning process; besides, the number of particles is 500; 

0.1;δ = 2,β =  respectively. 
In Fig. 5, the root mean squared error (RMSE) of the 

methods are depicted with respect to time when we run 300 
times for an identical track with a single Gaussian noise, 
and there was no diverging tracking for any methods 
during the simulations for this particular track. The applied 
noise variances are 0.01, 0.1, and 0.001 for ,wβ Rw  and 

,x yu , respectively. The result shows that the EKF 
outperforms the other two methods, but CRPF has very 
similar performance to that of the EKF even though the 
noise statistics are known only for the EKF. Fig. 5 shows 
that CRPF converges faster than the other two methods. 
When we apply the mixture Gaussian noise for the 
identical track over 300 simulations, the result is very 
similar to Fig. 5 although we do not show the result here. 
To obtain more various simulation results with a single 
Gaussian noise, we perform simulations with various noise 
variance scenarios: applied variances of ,wβ  ,Rw  and ,x yu  
are (0.01, 0.1), (0.1,1), (0.001, 0.01), respectively. In Figs. 
6-7, the RMSEs are depicted when a single Gaussian was 
applied over 300 simulations where the true target tracks 
are randomly generated at each run, and some tracking of 
highly nonlinear tracks are diverging. In these cases, CRPF 
outperforms even the EKF which takes advantage of the 

Table 3. Tuning λ  for CRPF. Noise variance scenarios 
when 0=λ  needs to be selected rather than =λ
0.95 for better performance. 5 is used for 2,( )

0,(1,2)
iσ .

wβ  Rw  ,x yu   
0.01  1  0.01  2,( )

0,(3,4)0, 1 , 0.1iq  or 2λ = = σ =  
0.01  1  0.01  2,( )

0,(3,4)0, 1 , 0.1iq  λ = = σ =  

 

 
Fig. 5. RMSE in X coordinate by 300 runs for the same 

track when a single Gaussian noise was applied 
 

 
Fig. 6. RMSE in X coordinate by 300 runs of randomly 

different tracks when a single Gaussian noise was 
applied. The noise variance scenario is (0.01, 0.1, 
0.001) in the order of ,wβ ,Rw  and ,x yu . 

 
Fig. 7. RMSE in X coordinate by 300 runs of randomly 

different tracks when a single Gaussian noise was 
applied. The noise variance scenario is (0.01, 0.1, 
0.001) in the order of ,wβ ,Rw  and ,x yu  
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noise information of the system. HIF shows the worst 
performance, and it may not be robust and appropriate 
method for the problem. Although we do not show results 
here, all the other scenarios show similar results with Figs. 
6-7. Fig. 8 shows an example of diverging tracking by HIF, 
and also shows the poor performance of the EKF. The 
tracking by HIF tends to diverge particularly when the true 
track is highly nonlinear.  

In this figure, only CRPF demonstrates the robust 
performance. Fig. 9 shows a similar result when we apply 
the mixture Gaussian noise to the problem. CRPF, is not 
affected by the mixture Gaussian noise as shown in Fig. 9. 
Fig. 10 shows an example of target tracking by the three 

methods when the mixture Gaussian noise is applied 
without any diverging or deviating tracks. 

Under the noise variance scenario of ( 0.01,wβ =  Rw =  
0.1,  and , 0.001x yu = ), the numbers of diverging or 
deviating tracking from the true target tracks during the 
simulations are summarized in Table 4. We set the 
threshold of divergence or deviation to ±10m for HIF, ±5m 
for both the EKF and CRPF, respectively, in any directions 
and at any time step when we count the number of times 
the trackers deviate from the true tracks. 

 
 

5. Summary and Conclusion 
 
We have proposed and assessed the performance of HIF 

and CRPF and compared to that of the well-known Kalman 
filtering for the problem of tracking a target in two 
dimensional space based on the range and the bearing of 
the target. The problem is modeled by the dynamic state 
system and the state is estimated based on the measurement 
that is a highly nonlinear function of the state of interest. 

  
       (a) Diverging by H∞                (b) Error in X coordinate              (c) Error in Y coordinate 

Fig. 8. Example of diverging tracking by H∞ filter. 

Table 4. The number of diverging or considerable deviating
tracking from the true target tracks out of 300 runs

Applied Noise CRPF EKF HIF 
Single Gaussian 0 37 39 

Mixture Gaussian 0 51 57 
 
 

 
Fig. 9. RMSE in X coordinate by 300 runs of randomly 

different tracks when a mixture Gaussian noise was 
applied. 

 
Fig. 10. Target tracking by the methods when a mixture 

Gaussian noise is applied. 
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Classical approaches such as maximum likelihood 
approaches are not pertinent for this nonlinear and 
dynamically time-varying parameter estimation. Some 
adaptive filters such as least mean squares method or 
recursive least squares method may not show the optimal 
performance because these filters do not take advantage of 
the knowledge of the state model. Well-known Wiener 
filter also has constraints in its usage only for a scalar and 
stationary signals. Interesting feature of the proposed 
approaches is that the noise statistics of the problem are not 
needed in their applications whereas the noise statistics 
need to be perfectly known for the well-known Kalman 
filter. The direction of the target motion is subject to the 
acceleration which can be forced by external diverse 
factors. Under the condition that any tracking of the methods 
do not diverge, the EKF shows the best performance, 
CRPF is the second, and HIF shows the worst performance. 
CRPF converges fastest even though the EKF shows the 
best performance under the condition. Sometimes, the 
tracking of HIF tends to diverge, especially when the target 
track is highly non-linear, and the performance becomes 
worse when the noise of the problem is a mixture Gaussian. 
Interestingly, the EKF also shows degraded tracking 
performance consistently with HIF when HIF’s tracking 
diverges; nonetheless, the EKF’s performance is not as 
bad as that of HIF. On the contrary, CRPF demonstrates 
robust tracking performance without any diverging or 
considerable deviating track even though it requires high 
computational cost which is a essential for the Monte 
Carlo method framework such as particle filtering. 
Regardless of the tracking performance of HIF and 
CRPF, these filters can be employed for many nonlinear 
problems that can be modeled by DSS model taking 
advantage of the feature that the noise statistics are not 
needed in their applications. 
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