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Abstract : “Tracking” here refers to the estimation of a moving object with some degree of accuracy where at least one measurement
is given. The measurement, which is the sensor-obtained output, contains systemic errors and errors that are due to the surrounding
environment. Tracking filters play the key role of the target-state estimation after the updating of the tracking system; therefore, the type
of filter that is used for the conduction of the estimations is crucial in the determining of the reliability of the updated value, and this
is especially true since the performances of different filters vary when they are subjected to different environmental and initial conditions.
The purpose of this paper is the conduction of a comparison between the performances of the  filter and the Kalman filter
regarding an ARPA-system tracking module that is used on board high-dynamic warships. The comparison is based on the capability
of each filter to reduce noise and maintain a stable response. The residual error is computed from the difference between the true and
predicted positions and the true and estimated positions for the given sample. The results indicate that the tracking accuracy of the
Kalman filter is higher compared with that of the optimal  filter; however, the response of the optimal  filter is more
stable.
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1. Introduction

A high dynamic warship is defined by high speed and

quick maneuvering. Therefore, accurate estimations of the

dynamic parameters are essential for increasing the

accuracy of prediction. The Kalman filter is a linear

estimator that minimizes the mean squared error as long as

target dynamics are modelled accurately. The 

tracking filter is a third order special case of the Kalman

filter that utilizes the tracking error, also known as

innovation, to predict the next position. Benedict and

Bordner(1962) in their early work established that the

performance of the filter relies upon the smoothing

parameters  ,  and .

In the recent past the development of tracking filters has

triggered quite an interest from many researchers

particularly the performance of the  filter and

Kalman filter due to their diverse applications in many

fields leading to valuable insights into their design

improvement. Lawton et al.(1998) distinguished among four

types of filtering methods including  filter, augmented

 filter, linear Kalman filter and extended Kalman filter

for tracking a non-maneuvering target. Sahoo et al.(2013)

compared the performance of  filter with Kalman

filter for tracking targets using radar measurements and

investigated the effects of switching the process noise

covariance, . Blair et al.(1991) compared the two-stage

 filter estimator with those of the standard α-β 

and  filters in tracking a maneuvering target

whereby the results indicate that the two-stage 

estimator performs better in the tracking of maneuvering

targets hence have increased potential for tracking targets

within combat systems that are responsible for tracking

and engaging a large number of targets.

This paper aims to compare the performance of both the

 filter and Kalman filter for tracking a high

dynamic target warship from a stationary own ship. The

comparison criteria involves comparing the filter’s capability
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 


 , (1)

  , (2)

  . (3)

　  , (4)

　 


 , (5)

　 



 . (6)

　  , (7)

　   , (8)

　 . (9)

  , (10)

 
. (11)

to reduce noise and steadily follow a maneuvering target. In

this study, the  filter used is an optimal filter

designed by (Pan et al., 2016). The Kalman filter employed

in this study uses fixed values of the measurement and

dynamic noise covariance  and  respectively.

2. Methodology

2.1  Tracking Filter Algorithm

The  filter is a constant gain, three-state

tracking filter. The three-state vector includes position,

velocity and acceleration. The acceleration is assumed to be

constant and includes zero mean white Gaussian noise.

Mahafza et al.(2004) put forward that the algorithm

involves two major stages of computations, that is,

prediction and smoothing. Eqs. (1) ~ (3) are the prediction

equations for position, velocity and acceleration respectively

where they are updated from the estimated state thereby

lowering the estimation error. Eqns. (4) ~ (6) are the

smoothing equations which are computed by adding a

weighted difference between the observed and the predicted

position to the forecast state.

Ⅰ. Prediction;

Ⅱ. Smoothing;

where;

the subscripts  ,  and  denote the observed, predicted

and smoothed state parameters respectively.

,  and  are the target’s position, velocity and

acceleration respectively.

 is the simulation time interval.

 is the sample number.

The selection of the smoothing coefficient is an important

design consideration as it directly affects the stability of the

output data, error reduction capability and other key design

parameters. The  filter model under consideration

in this study has three real roots and represents the filter

minimizing the discounted old data least squares error for a

constantly accelerating target whereby the position, velocity

and acceleration gain coefficients are determined by the

damping parameter, , as shown in Eqs. (7) ~ (9).

Where  ,  and  are the position, velocity and

acceleration smoothing coefficients,  is the damping

parameter whose value lies in the interval 0≤≤1. Since

the smoothing coefficients are dependent on the value of

the damping parameter, optimization of the filter was

performed on the  by (Pan et al., 2016).

2.2 Kalman Filter Algorithm

The Kalman filter is a recursive filter that requires very

little data storage as only the incoming data information is

used and therefore does not store up previous information.

The Kalman gain is also computed recursively.

The algorithm comprises the following steps;

Ⅰ. Prediction step;

Eq. (10) is the state prediction equation as it predicts the

state of the target at time  based on the state at time

. Eq. (11) is the predicted state covariance matrix of the

process noise  and it depicts the accuracy of predicting

the target’s state at time  based on the state values

obtained at time .

Where;

 

















is the state vector containing the position,



Anne Wanjiru Njonjo․Bao-Feng Pan․Tae-Gweon Jeong

- 271 -

 . (12)




 


     

     
.

　, (13)

　  . (14)

 sin

cos
sin
cos
sin
cos
  (15)

  cossin. (16)

velocity and acceleration parameters and  











    




     



     
     
     
     

is the state transition matrix.

 is the process noise with zero mean and standard

deviation  ,

 is the covariance matrix of the dynamic model driving

noise vector, 

 is the sampling period and

 is the state covariance matrix at time ．

The target measurement equation is given by

Where;

 is the measurement vector which comprises only the

position since in this study observation is made on the

position only.

 is the measurement error with zero mean and

standard deviation  ,

H is the measurement/ observation matrix given by

Ⅱ. Correction step;

Eq. (13) is the Kalman filtering equation as it computes

the updated estimate of the current state of the target. Eq.

(14) is the updated estimate of the state covariance matrix.

Where;

 
; Kalman gain at time t,

 ; Residual at time t,

 
; Residual covariance,

^ denotes the estimated state.

The design of the Kalman filter enables it to easily adapt

to changes in noise or sampling intervals while still

maintaining optimality since it computes the gains

iteratively. This is, however, not the case with the

 filter whose gains remain fixed at known values.

This in turn reduces the computational complexities hence

giving the  filter an advantage over the Kalman

filter.

3. Simulation

3.1 Target model conditions

The target was modeled under the initial conditions laid

out in Table 1 below.

Table 1 Target’s initial conditions

Position
(x, y)

Relative
speed
m/s

Sampling time
intervals, s Sample size

(573, 1038.4) 50.4 3 1,000

The original high dynamic target’s position was modeled

using the sine-Cosine equations shown below in Eqs. (15)

& (16);

Where parameters  and  in the above are applied to

control the relative speed in this study.

The resulting data was then sampled at intervals of 3

seconds to give the true trajectory of the target as shown

below in Fig. 1.

Fig. 1 Target’s true position
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3.2 Noise Addition

The observed position is the output obtained from the

radar measurements and therefore includes an error. In this

study, the noisy observation was obtained by corrupting the

true state with zero mean random white Gaussian noise

with a standard deviation,  , of 10  . Fig. 2 and Fig. 3

show the error distribution in the observation.

Fig. 2 East-West error in the observation

Fig. 3 North-South error in the observation

3.3 The ,  and  Selection

The filtering coefficients,  ,  and , were chosen based

on the optimal value of the damping parameter . Pan et

al.(2016) suggested that the damping parameter  should be

set as 0.64 for a maneuvering target with an initial speed of

50.4  . Equations (5) ~ (7) were then employed to

compute the optimal filtering coefficients. Therefore, the

 filter used in this study for comparison is an

optimal filter.

3.4 Kalman Filter Tuning

The  matrix shows the accuracy of the radar

measurement. Hence, it is the covariance matrix of the

measurement error,  , with a variance of 
. The matrix

, on the other hand, reflects the uncertainty in the target’s

trajectory and therefore it is the process noise, ,

covariance matrix with a variance of 
 . Since the effects

of both  and  are negatively correlated, the matrices

need to be carefully selected and tuned to avoid divergence

of the filter estimates rendering them useless. In addition,

given that the  and  matrix in this study are a fixed

value throughout the filtering process, the initial choice of

both covariance matrices is crucial in ensuring a good

performance of the filter.

The tuning process in this study was achieved by

changing the  and  covariance matrices while

simultaneously feeding the measurement data to the filter

for each covariance matrix coefficient. The output was then

used to compute cumulative positional error which was then

plotted against corresponding covariance matrix coefficients.

The purpose of this was to identify the covariance matrix

coefficient corresponding to the least error. From the Fig. 4

and Fig. 5, the values of  and  covariance matrix

coefficients corresponding to the minimum residual error are

1 and  respectively.

Fig. 4 Cumulative error difference between observed and

predicted positions against  matrix coefficient

Fig. 5 Cumulative error difference between true and

smoothed positions against  matrix coefficient
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Fig. 6 Cumulative error difference between observed and

predicted positions against  matrix coefficient

Fig. 7 Cumulative error difference between true and

smoothed positions against  matrix coefficient

4. Comparision of the filters

In this study, comparison of the two filters’ performance

was made based on the filter’s capability to minimize the

noise level and ability to follow the randomly maneuvering

target warship. This was done by comparing the size of the

error in the estimated and predicted positions, that is

estimation and prediction error respectively. Estimation

error is obtained by computing the deviation of the

estimation from the true position for each sample. Similarly,

prediction error indicates how far the predicted position

deviates from the true position.

Fig. 8 & Fig. 9 show the true, observed, predicted and

smoothed positions trajectories. Fig. 8 shows the positional

trajectories obtained from the  filter, while Fig. 9

shows the resulting trajectories for the Kalman filter. From

the curves, the  filter seems to easily follow the

maneuvering target warship with greater sensitivity as

indicated by the steadiness in the predicted and smoothed

trajectories. On the contrary, the predicted and smoothed

curves resulting from the Kalman filter are marred with

erratic changes and overshooting at various points on the

trajectories indicating the filter’s inability to respond well to

maneuvers particularly for this type of trajectory.

Fig. 8 Target’s True, Observed, Predicted and Smoothed

Position (=0.64),  filter

Fig. 9 Target’s True, Observed, Predicted and Smoothed

Position, Kalman Filter

Fig. 10 & Fig. 11 show the cumulative prediction errors

resulting from the  filter and the Kalman filter

respectively. Fig. 12 & Fig. 13 are the cumulative

estimation errors obtained from the  filter and the

Kalman filter respectively. These results show that the

Kalman filter has a slightly higher accuracy in both

prediction and estimation of the position of the target

warship than the  filter.
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Fig. 10 Cumulative prediction error,  filter, error=

19, 622 

Fig. 11 Cumulative prediction error, Kalman filter,

error=19,104 

Fig. 12 Cumulative estimation error,  filter,

error=10,653 

Fig. 13 Cumulative estimation error, Kalman filter,

error=10,492 

5. Conclusion

In this study, two filters have been considered for

comparison in their performance. The results obtained

depict that both filters when properly designed and tuned

are capable of tracking the high dynamic warship with

some degree of accuracy. The Kalman filter, however, has

a higher accuracy in both prediction and estimation of the

target’s position as compared to the optimal  filter.

On the other hand, the smoothed and predicted trajectories

obtained from the Kalman filter appear to have a high rate

of overshooting from one sample point to another along the

trajectory hence unstable. The  filter smoothed and

predicted trajectories are steady throughout the whole

sample indicating its ability to respond well to the target’s

maneuvers. In addition, the optimal  filter given its

ease of implementation due to a low computational load

performs quite competitively when compared with the

Kalman filter.

Future study will involve tracking the high dynamic

target warship while own ship is also on motion. In

addition, the authors will consider replacing the 

filter with the four-state filter  filter for a more

precise prediction.
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