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Abstract 

Object tracking is a common task in computer vision, an essential part of various vision-based applications. 
After several years of development, object tracking in video is still a challenging problem because of various 
visual properties of objects and surrounding environment. Particle filter is a well-known technique among common 
approaches, has been proven its effectiveness in dealing with difficulties in object tracking. However, particle filter 
is a high-complexity algorithms, which is an severe disadvantage because object tracking algorithms are required 
to run in real time. In this research, we utilize parallel programming to accelerate particle filter-based object 
tracking algorithms. Experimental results showed that our approach reduced the execution time significantly. 

 

1. Introduction 

Object tracking has important roles in many vision-based 
applications, such as industrial inspection, human-computer 
interfaces, traffic monitoring, surveillance systems. Generally, 
the goal of object tracking is locating and producing a 
trajectory record of the objects in image sequences. Among 
common approaches for object tracking, particle filter is a 
robust solution. Particle filter has been proven to produce 
high performance when applied to nonlinear and non-
Gaussian estimation problems [1]. This method approximates 
a posterior probability density of the state, in this case it is 
the positions of the object in image sequence. The 
approximation is done by using point mass representations of 
probability densities, which are called particles. Usually 
contours, color features, or appearance models are used as 
particles when applying particle filter to object tracking [1-4]. 
The color histogram is often used because of its robustness 
against noise and occlusion, but suffers from illumination 
changes. This disadvantage can be overcome by using other 
color spaces which are less sensitive to light conditions. 

Although particle filter have been commonly used in 
recent years, they have considerable disadvantages [5]. One 
of those is sampling impoverishment. In this phenomenon, 
high-weight particles have higher chance to be drawn 
multiple times during resampling, whereas low-weight 
particles have low chance to be drawn at all. This makes the 
diversity of the particles decrease after several resampling 
steps. In the worst case scenario, all particles might be 

reduces the performance of tracking process drastically. 
Another disadvantage of particle filter is computational 
complexity. The complexity increases as the area of tracked 
region and the number of particles increase. When the 
dimensionality of the state space increases, the number of 
particles required for the sampling increases exponentially. 

This research presents a method for utilizing modern 
multi-core computer systems and parallel programming 
technique in object tracking tasks. We use parallel 
programming to implement particle filter algorithm, for the 
purpose of increasing the performance of particle filter based 
object tracking method. In the following sections, we provide 
details for the parallel implementation of object tracking 
system and experimental results. 

2. Object tracking system 

2.1 Particle filter 

The particle filter in this research, which is developed to 
track movement of objects, is based on Condensation 
algorithm [1]. Let Xt be the state vector which describes the 
quantities of a tracked object, and Zt be the vector which 
stores all the observations of object movements {z1, . . . , zt} 
up to time t. Usually, the posterior density p(Xt | Zt) and the 
observation density p(Zt | Xt) are non-Gaussian, which 
increases the complexity of tracking process. 

In particle filter algorithm, the probability distribution, 
which presents the object movements, is approximated by a 
weighted particle set S = {(sn n) | n = 1 . . . N}. For each 
particle, element s represents the hypothetical state, i.e. 
location, of the tracked object, and a corresponding discrete 

is described by a statistical model. In tracking process, each 
particle is weighted depending on observations, then N 
particles are drawn using resampling techniques. The 
estimation of mean state is calculated at each time step by: 

 
 

(1) 

Because particle filters have ability to model the 
uncertainty of object movements, it can provide a robust 
tracking framework. It can consider multiple state hypotheses 
simultaneously. On the other hand, particle filters are able to 
produce high accuracy prediction from previous observations, 
hence it can deal with short-time occlusions and sudden 
changes in object movements. In this research we use color 
models for likelihood calculation. We combine particle filter 
with color model by integrating local color distribution into 
particles. The model is based on [6]. 

2.2 Parallel implementation 

Parallelization can utilize the multi-core architecture of 
modern embedded systems, in which all cores of the 
processor take part in the calculation process. Parallel 
implementation can decrease the processing time of these 
steps, which leads to higher performance due to higher 
processed frames per second. However, parallelization has its 
own limitation. Generally in parallel computing, a task is 
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split up into several threads, then the split tasks will be 
solved separately in each thread. After completing the 
computation, those threads will communicate with each other 
to produce final results. In some cases, the time required for 
communication is higher than the time of solving split tasks. 
Overall execution time of parallel implementation in these 
cases may be higher than sequential implementation. This 
phenomenon is called parallel slowdown. 

For the purpose of avoiding parallel slowdown, we only 
use parallel implementation for resampling particles and 
calculating likelihood between particles and target object. 
The detailed algorithms for these steps are listed below. 
Since there are no data dependencies between particles in 
these algorithms, parallel threads do not need to 
communicate with each other in processing. For example, in 
resampling step, newArr(1), newArr(2), newArr(3), 
and newArr(4) can be calculated at the same time using 
four threads and so on, hence reduce the execution time of 
whole process. 

Algorithm 1. Systematic resampling. 
Create newArr for storing output of resampling process 
parallel-for i = 1 to (number of particle) 
j  0 
while (probabilities of particle(j)) < (likelihood i with 
target object) 

j  j + 1 
endwhile 
newArr(i)  particle(j) 

endfor 

Algorithm 2. Likelihood calculation. 
parallel-for i = 1 to (number_of_particle) 

Get image region of particle i 
Calculate likelihood between obtained image region and 
target object 

endfor 

3. Experiments 

In this section, we evaluate the performance of parallel 
programming. Both versions of particle filter algorithm, 
sequential and parallel, are implemented in C++ under Linux 
operating system. OpenCV library is used for processing 
video frames. For parallelization, we use OpenMP feature of 
GNU compiler. The system has 8GB of RAM and a quad-
core Intel CPU running at 3.0GHz. The video used for testing 
is acquired from [7]. It has 630 frame, and a resolution of 
320x240. The task is to track a cup which was moving in 
front of a wall with complex textures, as shown in Figure 1. 

  
Figure 1. The tracking task in experiment. 

We performed the tracking task with different numbers of 
particles, ranging from 500 to 2500 particles. The 
comparison in execution time between parallel programming 
and sequential programming is illustrated in Figure 2, lower 

is better. As can be seen, at 500 particles, parallel 
implementation is not much better than sequential 
implementation because of parallel slowdown. However, 
when the number of particles increased, parallel 
implementation showed its advantage over sequential 
implementation. 

 
Figure 2. Comparison in execution time. 

4. Conclusions 

This research aims to increase the performance of particle 
filter-based object tracking method by using parallel 
programming. Particle filter is a well-known technique 
among common approaches, has been proven its 
effectiveness in dealing with difficulties in object tracking. 
However, particle filter is a high-complexity algorithms, 
which is an severe disadvantage because object tracking 
algorithms are required to run in real time. In this research, 
we have implemented parallel particle filter for object 
tracking in order to utilize the multi-core architecture. The 
experimental results show that multi-core systems can 
produce higher performance if the hardware is used at its 
maximum potential. 
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