
2018년 춘계학술발표대회 논문집 제25권 제1호(2018. 5)

Accelerating particle filter-based object tracking algorithms
using parallel programming

Mai Thanh Nhat Truong*, Sanghoon Kim*
*Department of Electrical, Electronic, and Control Engineering, Hankyong National University

Abstract

Object tracking is a common task in computer vision, an essential part of various vision-based applications.
After several years of development, object tracking in video is still a challenging problem because of various
visual properties of objects and surrounding environment. Particle filter is a well-known technique among common
approaches, has been proven its effectiveness in dealing with difficulties in object tracking. However, particle filter
is a high-complexity algorithms, which is an severe disadvantage because object tracking algorithms are required
to run in real time. In this research, we utilize parallel programming to accelerate particle filter-based object
tracking algorithms. Experimental results showed that our approach reduced the execution time significantly.

1. Introduction

Object tracking has important roles in many vision-based
applications, such as industrial inspection, human-computer
interfaces, traffic monitoring, surveillance systems. Generally,
the goal of object tracking is locating and producing a
trajectory record of the objects in image sequences. Among
common approaches for object tracking, particle filter is a
robust solution. Particle filter has been proven to produce
high performance when applied to nonlinear and non-
Gaussian estimation problems [1]. This method approximates
a posterior probability density of the state, in this case it is
the positions of the object in image sequence. The
approximation is done by using point mass representations of
probability densities, which are called particles. Usually
contours, color features, or appearance models are used as
particles when applying particle filter to object tracking [1-4].
The color histogram is often used because of its robustness
against noise and occlusion, but suffers from illumination
changes. This disadvantage can be overcome by using other
color spaces which are less sensitive to light conditions.

Although particle filter have been commonly used in
recent years, they have considerable disadvantages [5]. One
of those is sampling impoverishment. In this phenomenon,
high-weight particles have higher chance to be drawn
multiple times during resampling, whereas low-weight
particles have low chance to be drawn at all. This makes the
diversity of the particles decrease after several resampling
steps. In the worst case scenario, all particles might be

reduces the performance of tracking process drastically.
Another disadvantage of particle filter is computational
complexity. The complexity increases as the area of tracked
region and the number of particles increase. When the
dimensionality of the state space increases, the number of
particles required for the sampling increases exponentially.

This research presents a method for utilizing modern
multi-core computer systems and parallel programming
technique in object tracking tasks. We use parallel
programming to implement particle filter algorithm, for the
purpose of increasing the performance of particle filter based
object tracking method. In the following sections, we provide
details for the parallel implementation of object tracking
system and experimental results.

2. Object tracking system

2.1 Particle filter

The particle filter in this research, which is developed to
track movement of objects, is based on Condensation
algorithm [1]. Let Xt be the state vector which describes the
quantities of a tracked object, and Zt be the vector which
stores all the observations of object movements {z1, . . . , zt}
up to time t. Usually, the posterior density p(Xt | Zt) and the
observation density p(Zt | Xt) are non-Gaussian, which
increases the complexity of tracking process.

In particle filter algorithm, the probability distribution,
which presents the object movements, is approximated by a
weighted particle set S = {(sn n) | n = 1 . . . N}. For each
particle, element s represents the hypothetical state, i.e.
location, of the tracked object, and a corresponding discrete

is described by a statistical model. In tracking process, each
particle is weighted depending on observations, then N
particles are drawn using resampling techniques. The
estimation of mean state is calculated at each time step by:

(1)

Because particle filters have ability to model the
uncertainty of object movements, it can provide a robust
tracking framework. It can consider multiple state hypotheses
simultaneously. On the other hand, particle filters are able to
produce high accuracy prediction from previous observations,
hence it can deal with short-time occlusions and sudden
changes in object movements. In this research we use color
models for likelihood calculation. We combine particle filter
with color model by integrating local color distribution into
particles. The model is based on [6].

2.2 Parallel implementation

Parallelization can utilize the multi-core architecture of
modern embedded systems, in which all cores of the
processor take part in the calculation process. Parallel
implementation can decrease the processing time of these
steps, which leads to higher performance due to higher
processed frames per second. However, parallelization has its
own limitation. Generally in parallel computing, a task is

- 469 -

2018년 춘계학술발표대회 논문집 제25권 제1호(2018. 5)

split up into several threads, then the split tasks will be
solved separately in each thread. After completing the
computation, those threads will communicate with each other
to produce final results. In some cases, the time required for
communication is higher than the time of solving split tasks.
Overall execution time of parallel implementation in these
cases may be higher than sequential implementation. This
phenomenon is called parallel slowdown.

For the purpose of avoiding parallel slowdown, we only
use parallel implementation for resampling particles and
calculating likelihood between particles and target object.
The detailed algorithms for these steps are listed below.
Since there are no data dependencies between particles in
these algorithms, parallel threads do not need to
communicate with each other in processing. For example, in
resampling step, newArr(1), newArr(2), newArr(3),
and newArr(4) can be calculated at the same time using
four threads and so on, hence reduce the execution time of
whole process.

Algorithm 1. Systematic resampling.
Create newArr for storing output of resampling process
parallel-for i = 1 to (number of particle)
j 0
while (probabilities of particle(j)) < (likelihood i with
target object)

j j + 1
endwhile
newArr(i) particle(j)

endfor

Algorithm 2. Likelihood calculation.
parallel-for i = 1 to (number_of_particle)

Get image region of particle i
Calculate likelihood between obtained image region and
target object

endfor

3. Experiments

In this section, we evaluate the performance of parallel
programming. Both versions of particle filter algorithm,
sequential and parallel, are implemented in C++ under Linux
operating system. OpenCV library is used for processing
video frames. For parallelization, we use OpenMP feature of
GNU compiler. The system has 8GB of RAM and a quad-
core Intel CPU running at 3.0GHz. The video used for testing
is acquired from [7]. It has 630 frame, and a resolution of
320x240. The task is to track a cup which was moving in
front of a wall with complex textures, as shown in Figure 1.

Figure 1. The tracking task in experiment.

We performed the tracking task with different numbers of
particles, ranging from 500 to 2500 particles. The
comparison in execution time between parallel programming
and sequential programming is illustrated in Figure 2, lower

is better. As can be seen, at 500 particles, parallel
implementation is not much better than sequential
implementation because of parallel slowdown. However,
when the number of particles increased, parallel
implementation showed its advantage over sequential
implementation.

Figure 2. Comparison in execution time.

4. Conclusions

This research aims to increase the performance of particle
filter-based object tracking method by using parallel
programming. Particle filter is a well-known technique
among common approaches, has been proven its
effectiveness in dealing with difficulties in object tracking.
However, particle filter is a high-complexity algorithms,
which is an severe disadvantage because object tracking
algorithms are required to run in real time. In this research,
we have implemented parallel particle filter for object
tracking in order to utilize the multi-core architecture. The
experimental results show that multi-core systems can
produce higher performance if the hardware is used at its
maximum potential.

5. Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of
Education(2015R1D1A1A01057518).

References
[1] Michael Isard, Andrew Blake, Condensation - conditional
density propagation for visual tracking, International Journal of
Computer Vision 29 (1998) 5 28.
[2] Michael Isard, Andrew Blake, ICondensation: Unifying low-
level and high-level tracking in a stochastic framework. In Proc.
European Conf. Computer Vision, pages 893 908, 1998.
[3] John MacCormick, Andrew Blake, A probabilistic exclusion

Computer Vision, pages 572 578, 1999.
[4] Ying Wu, Robust visual tracking by integrating multiple cues
based on co-inference learning, International Journal of Computer
Vision 58 (2004) 55 71.
[5] King O., Forsyth D., How does condensation behave with a
finite number of samples?, Proceedings of the 6th European
Conference on Computer Vision, pages 695 709, 2000.
[6] Katja Nummiaro, Esther Koller-Meier, Luc Van Gool, Object
Tracking with an Adaptive Color-Based Particle Filter, Lecture
Notes in Computer Science, Pattern Recognition 2449 (2002) 353
360.
[7] Tracking Dataset. (ONLINE) Available at:
http://cmp.felk.cvut.cz/~vojirtom/dataset/tv77/. (Accessed 01 March
2018).

- 470 -

