DOI QR코드

DOI QR Code

Improvement of Tracking Performance of Particle Filter in Low Frame Rate Video

낮은 프레임률 영상에서 파티클 필터의 추적 성능 개선

  • Received : 2013.11.11
  • Accepted : 2014.02.11
  • Published : 2014.02.28

Abstract

Particle filter algorithm has been proven very successful for non-linear and non-Gaussian estimation problem and thus it has been widely used for object tracking for video signals. If the object moves significantly, particle filter needs very large number of particles to track object and this results high computational cost. In this paper, modified particle filter by adopting motion vector is proposed for tracking vehicle in low frame rate(LPR) video input, which the object moving significantly and randomly between consecutive frames. In the proposed algorithm, motion vector is applied in selection and observe step. The experimental result shows that the proposed particle filter can track vehicle successfully in the case when previous one fails. And it also shows the propose method increases the precision of tracking.

파티클 필터는 비선형 비가우시안 추정 문제에 매우 효과적인 수단으로 비디오 영상에서 객체를 추적하는 경우에 널리 이용되어왔다. 하지만 객체의 이동이 심한 경우 객체의 추적을 위해서는 매우 많은 개수의 파티클이 있어야 하므로 계산량이 크게 증가하게 된다. 본 논문에서는 프레임간의 객체 이동이 상당히 크게 이루어지는 low frame rate(LPR) 비디오에서 차량의 추적을 위하여 모션 벡터를 이용한 개선된 파티클 필터 추적 방법을 제안하고 실험을 통하여 성능을 평가하였다. 제안한 파티클 필터에서는 selection 단계와 observe 단계의 두 단계에서 모션 벡터를 적용하였다. 실험 결과 제안한 방법은 LPR 영상에서 기존의 파티클 필터가 객체의 추적에 실패하는 경우에도 성공적 추적이 가능하며, 추적의 정확도 또한 향상되었음을 보여주었다.

Keywords

References

  1. M. Greiffenhagen, V. Ramesh, D. Comaniciu, and H. Niemann, "Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System," In Proc. of IEEE Conf. Computer Vision and Pattern Recognition, 2000, pp. 335-342.
  2. B. Menser and M. Brunig, "Face Detection and Tracking for Video Coding Applications," Asilomar Conf. on Signals, Systems, and Computers, 2000, pp. 49-53.
  3. J. Segen and S. Pingali, "A Camera-Based System for Tracking People in Real Time," In Proc. of Int. Conf. on Pattern Recognition, 1996, pp. 63-67.
  4. M. Black and A. Jepson, "A Probabilistic Framework for Matching Temporal Trajectories: Condensation-Based Recognition of Gestures and Expressions," In Proc. of European Conf. on Computer Vision, 1998, pp. 909-924.
  5. I.-S. Kim and H. Shin, "A Study on Developmrnt od Intelligent CCTV Security System Basrd on BIM," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 5, 2011, pp. 789-795.
  6. P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T.Ghirmai, M.F. Bugallo, and J. Miguez, "Particle Filtering," IEEE Signal Processing Mag., 2003, pp. 1053-5888.
  7. M. Z. Islam, C. M. Oh, and C. W. Lee, "Video Based Moving Object Tracking by Particle Filter," Int. J. of Signal Processing, Image Processing and Pattern, vol. 2, no. 1, Mar. 2009.
  8. S. Noh, T. Kim, N. Ko, and Y. Bae, "Particle filter for correction of GPS location data of a mobile robot," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 2, 2012, pp. 381-389.
  9. Z. Zhu, X. Lu, and Y. Xiong, "Vehicle tracking by integrating motion vector estimation with particle filter," In Proc. of the 2012 5th Int. Conf. on Image and Signal Processing, Oct. 2012, pp. 133-137.
  10. Z. Tao, F. Shumin, and W. Lili, "Particle filter tracking in low frame rate video," In Proc. of the 30th Chinese Control Conf., July 2011, pp. 3254-3259.
  11. M. Isard and A. Blake, "Contour Tracking by Stochastic Propagation of Conditional Density," In Proc. of European Conf. on Computer Vision, 1996, pp. 343-356.
  12. M. Isard and A. Blake, "CONDENSATION-Conditional Density Propagation for Visual Tracking," Int. J. on Computer Vision vol. 29, no. 1, 1998, pp. 5-28. https://doi.org/10.1023/A:1008078328650
  13. K. Nummiaro, E. Koller-Meier, and L.V. Gool, "A color-based particle filter," In Proc. of 1st Int. workshop on generative-model-based vision, 2002, pp. 53-60.
  14. N. Bouaynaya, W. Qu, and D. Schonfeld, "An Online Motion-Based Particle Filter For Head Tracking Applications," IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Mar. 2005, pp. 18-23.
  15. F. Aherne, N. Thacker, and P. Rockett, "The Bhattacharyya Metric as an Absolute Similarity Measure for Frequency Coded Data," Kybernetika, vol. 34, no. 4, 1998, pp. 363-368.
  16. T. Kailath, "The Divergence and Bhattacharyya Distance Measures in Signal Selection," IEEE Trans. Communication Technology, vol. 15, no. 1, 1967, pp. 52-60. https://doi.org/10.1109/TCOM.1967.1089532
  17. Y. Jia and W. Qu, "Real-Time Integrated Multi-Object Detection and Tracking in Video Sequences Using Detection and Mean Shift Based Particle Filters," In Proc. of IEEE 2nd Symp. on Web Society(SWS), Aug. 2010, pp. 738-743.