• Title/Summary/Keyword: Track Condition

Search Result 495, Processing Time 0.036 seconds

Study for The Lateral Displacement of Railway Vehicle (철도차량의 횡 변위에 대한 연구)

  • 양희주;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.535-538
    • /
    • 1997
  • Studied in this paper was the lateral displacement of railway vehicle using the multi-body dynamic simulation program (VAMPIRE) and the BASS 501. The lateral displacement of railway vehicle is occurred by thc clearance between wheel flange and rail, the track irregularity, the property of each suspension of vehicle and the cant etc. The results of analysis shown that Vehicle is not interfere with subway platform in any conditions namely the tare and full load condition, the wheel. wear condition and the stationary and running of vehicle.

  • PDF

A Study on the Kinematic Envelope of the Railway Vehicle (철도차량의 Kinematic Envelope에 관한 연구)

  • 양희주;이강운;박길배
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.863-869
    • /
    • 2002
  • Studied in this paper was the kinematic envelope of the railway vehicle to calculate the lateral displacement using the multi-body dynamic simulation program (VAMPIRE) and the BASS 501. The lateral displacement of railway vehicle is occurred by the clearance between wheel flange and rail, the track irregularity, the property of each suspension of vehicle and the cant of track etc. The results of analysis shown that Vehicle is not interfere with subway platform in any conditions namely the tare and full load condition, the wheel wear condition and the stationary and running of vehicle.

  • PDF

Parametric Study on Track Deterioration by Various Track Type of Serviced Line (운행선 궤도형식별 궤도열화에 미치는 매개변수 연구)

  • Choi, Jung-Youl;Park, Jong-Yoon;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.239-244
    • /
    • 2022
  • In this study, the key parameters affecting the deterioration of each track type were derived based on field inspections and laboratory tests. The existing track deterioration model was limited to the ballasted tracks, and the deterioration evaluation of concrete tracks was insufficient. In this study, the laboratory test was performed to evaluate the performance and condition of track components to derive the deterioration factors reflecting the characteristics of various track structures. In addition, through analysis of track maintenance history data, parameters affecting track deterioration and maintenance were derived. The key parameters for presenting a track deterioration model based on the track performance of ballasted and concrete tracks through field inspection, track maintenance history data analysis, and performance test of track components using on-site specimens were identified as track support stiffness, Ballast gravel, track settlement and Resilience pad were presented.

Assessment for Vertical Earth Pressure of Roadbeds Applied to Slab Track Structure by Real-scale Loading Tests (실대형 재하시험을 통한 슬래브궤도 노반의 연직토압 평가)

  • Lee, Tae-Hee;Lee, Jin-Wook;Won, Sang-Soo;Lee, Seong-Hyeok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2057-2063
    • /
    • 2011
  • Recently, concrete slab track is mostly used to satisfy requirements for safety of high-speed train operation and economical efficiency of maintenance. Due to structural characteristics of ballast track structures, roadbeds under the ballast experience a state of high stress. In case of slab track structures, however, its roadbeds place on a condition of low stress less than roadbeds of ballast track structures as increasing of the loading area. In this study, vertical earth pressure under slab track structures was investigated through real-scale loading tests and theoretical analysis to compare with each other.

  • PDF

Numerical Study on Load Transfer Efficiency of Floating Slab Track (플로팅궤도 연결부의 하중전달효율 산정을 위한 수치해석)

  • Chung, Won-Seok;Jang, Hoon;Park, Sung-Jae;Park, Myung-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1287-1292
    • /
    • 2010
  • Recently, many railway stations are built under the railway line in urban area. The passage of railway vehicles generates mechanical vibrations of a wide range of frequency. Thus, it is required to place structural vibration isolation systems to reduce vibration and noise originating from surrounding environments. This study utilizes elastometric bearings as a vibration isolation system. The slab track system on elastometric bearings is called "low vibration track" or "floating slab track." In this low vibration track system, dowel bars or plates can be installed to minimize the discontinuity of displacement between adjacent floating slab tracks. This study is to numerically investigate the effects of dowel members on static behavior of the low vibration track. The study involves two steel dowel systems including dowel bars and dowel plates. Each dowel system is analyzed under the service load condition to assess load transfer efficiency (LTE).

  • PDF

Key Success Factor For Korea high speed Track Maintenance Decision Making Support System (고속선 궤도관리 의사결정지원 시스템 개발을 위한 성공요인)

  • Kim, Jong-Kyong;Lee, Choon-Kil;Woo, Byoung-Koo;Kim, Nam-Hong;Lee, Sung-Uk
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.486-493
    • /
    • 2007
  • In the field of maintenance of domestic high-speed railroad which has cost a great deal more than any other fields since it was opened; 1) We found out the conditions of current domestic railroad by understanding the status of track maintenance and analyzing operative processes of track maintenance. 2) The main factors in track maintenance of high-speed railroad, that is, the elements for success to help decision-support in track maintenance were derived from a research on literature about the condition of railroad R&D in these days and about the prediction of the irregular progresses of track. 3) We derived the order of priority and weights from AHP analysis which was based on the survey regarding elements for success.

  • PDF

Pull-in Behavior Analysis in an Optical Disk Drive using Phase Plane and the Evaluations of Effecting Parameters for it (위상평면을 이용한 광디스크 트랙 끌어들임의 동적 해석 및 영향인자의 평가)

  • 최진영;박태욱;양현석;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.894-899
    • /
    • 2004
  • In this paper, the track pull-in behavior analyses in an optical disk drive (ODD) using plane phase is treated and the parameters affecting it are discussed. Track pull-in is the track capture procedure to do track following control and it is key factor to increase data transfer rate. Simulation method, Runge-Kutta method to solve nonlinear equation, is used to evaluate the track pull-in conditions, and the real servo loop parameters are applied in this process to get the more real condition. Finally, the comments for the acquired results are discussed briefly.

  • PDF

Analysis of Relationship between the Irregularities of Rail Weld Surface and Track Irregularities (레일용접부 요철과 궤도틀림 상관관계 분석)

  • Woo, Byoung-Koo;Kim, Yong-Hyok;Yun, Un-San;Kim, Kwan-Hyung;Lee, Sung-Uk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.539-545
    • /
    • 2009
  • KTX trains which began passenger service between Seoul and Busan in April 2004 have gained very high evaluation for their safe operation. Track is one of the most important means to keep KTX safety, it has not been a fail of safe structure. The track failure during operation may lead to a severe accident. So, it is to be verified the confidence of track maintenance management on the high speed line. This paper would like to find a track deformation trend through a comparative analysis on actual measurement data at these times. It discusses the effect of cyclic dynamic load at welding part. KTX dynamic impact load was measured in accordance with a rail surface irregularity and analyzed some track irregularities according to the condition of rail profile at welding part in the Gyeongbu high speed line.

  • PDF

Vibration Analysis Method for Railway Structure with Floating Slab (방진궤도가 부설된 역사의 진동해석 기법)

  • 양신추;김태욱;강윤석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.561-566
    • /
    • 2003
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under floating slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effects of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF

The review of safety against derailment on twisted track for Korean tilting train design (한국형 틸팅차량 설계의 비틀린 궤도상의 탈선안전도 검토)

  • Kim Nam-Po;Kim Jung-Seok;Park Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.299-307
    • /
    • 2005
  • The 180 km/h Korean Tilting Train(TTX) which is now developing as a part of the Korean National R&D project, was elaborately designed. As the tilting trains run curve track with the $30\%$ higher speed than normal trains, the higher centrifugal and dynamic force are expected. Furthermore the complex tilting system increase the probability of failure. Therefore it is very important for tilting train to ensure safety against derailment under the various kind of failed condition in the middle of running as well as normal operating condition. The TTX train have the relatively high roll stiffness to improve the lateral ride comfort and to limit the roll displacement on the curve. But the higher roll stiffness increase the risk of derailment on the twisted track. This paper describes the study to review the safety against derailment caused by the wheel unloading on the severely twisted track. The worst combination of maximum cant change with maximum twist defect was established by numerical simulation. And also it was assumed that the air bag deflated and still the train run its speed limit. Those kind of assumption might be the worst case from the view point of wheel unloading derailment on the twisted track. The dynamic simulation was done by means of VAMPIRE S/W and non-linear transient analysis. We found that derailment quotients Q/P was only slightly influenced by track twist but the wheel unloading was greatly influenced. And we ascertained that the higher roll stiffness the higher wheel unloading. In case of air bag deflated situation, the wheel unloading reached up to $100\%$ which means the wheel lift or jumped. Therefore it was concluded that the design need to be improved to ensure the safety against derailment on the maximum twisted track in case of air bag deflated and tilting train's speed limit.

  • PDF