• Title/Summary/Keyword: Total fungi

Search Result 703, Processing Time 0.021 seconds

Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases

  • Wu, Jiayao;Choi, Jaeyoung;Asiegbu, Fred O.;Lee, Yong-Hwan
    • Mycobiology
    • /
    • v.48 no.5
    • /
    • pp.373-382
    • /
    • 2020
  • Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac. kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.

Specific PCR Detection of Four Quarantine Fusarium Species in Korea

  • Hong, Sae-Yeon;Kang, Mi-Ran;Cho, Eun-Ji;Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • Fusarium species, a large group of plant pathogens, potentially pose quarantine concerns worldwide. Here, we focus on the development of a method for detecting four Fusarium species in quarantined plants in Korea: F. solani f. sp. cucurbitae, F. stilboides, F. redolens, and F. semitectum var. majus. Species-specific primers were designed from the nucleotide sequences of either the translation elongation factor-1 alpha (TEF1) gene or RNA polymerase II subunit (RPB2) gene. Two different primer sets derived from TEF1, all specific to F. solani f. sp. cucurbitae, were able to differentiate the two races (1 and 2) of this species. A set of nested primers for each race was designed to confirm the PCR results. Similarly, two primer sets derived from RPB2 successfully amplified specific fragments from five F. stilboides isolates grouped within a single phylogenetic clade. A specific TEF1 primer set amplified a DNA fragment from only four of the 12 F. redolens strains examined, which were grouped within a single phylogenetic clade. All of the F. semitectum var. majus isolates could be specifically detected with a single RPB2 primer set. The specificity of the primer sets developed here was confirmed using a total of 130 Fusarium isolates.

Screening and Application of Bacillus Strains Isolated from Nonrhizospheric Rice Soil for the Biocontrol of Rice Blast

  • Sha, Yuexia;Zeng, Qingchao;Sui, Shuting
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.231-243
    • /
    • 2020
  • Rice blast, caused by Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. The aim of this study was to screen bacterial isolates to efficiently prevent the occurrence of rice blast. A total of 232 bacterial isolates were extracted from nonrhizospheric rice soil and were screened for antifungal activity against M. oryzae using a leaf segment assay. Strains S170 and S9 showed significant antagonistic activity against M. oryzae in vitro and in leaf disk assays, and controlled M. oryzae infection under greenhouse conditions. The results showed that strains S170 and S9 could effectively control rice leaf blast and panicle neck blast after five spray treatments in field. This suggested that the bacterial strains S170 and S9 were valuable and promising for the biocontrol of rice disease caused by M. oryzae. Based on 16S rDNA, and gyrA and gyrB gene sequence analyses, S170 and S9 were identified as Bacillus amyloliquefaciens and B. pumilus, respectively. The research also demonstrated that B. amyloliquefaciens S170 and B. pumilus S9 could colonize rice plants to prevent pathogenic infection and evidently suppressed plant disease caused by 11 other plant pathogenic fungi. This is the first study to demonstrate that B. amyloliquefaciens and B. pumilus isolated from nonrhizospheric rice soil are capable of recolonizing internal rice stem tissues.

Comparison of Quality Characteristics of Long-Term Matured Korean Soy Sauce (장기숙성 한식간장의 숙성 기간별 품질 특성 비교)

  • Choi, Won-Seok;Lee, Nan-Hee;Choi, Ung-Kyu
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.5
    • /
    • pp.530-535
    • /
    • 2019
  • In this study, the quality characteristics of 30 kinds of long-term matured soy sauce collected from all over Korea classified according to ripening period were analyzed. The longer the soy sauce had to matured, the closer the pH was to neutrality. Acidity decreased as the ripening period increased. Total nitrogen and amino nitrogen content increased as the soy sauce matured. Moisture content decreased with the increasing soy sauce ripening period, and the content of pure extracts increased in proportion to the ripening period. The numbers of bacteria, fungi, and yeast increased in proportion to the maturation period. The content of P was highest in all soy sauce analyzed, followed by K, Ca, Mg, Fe and Zn. Mg and Ca contents decreased with maturing, whereas K increased with maturing.

Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A;Jeon, Mi Jin;Yu, Nan Hee;Kim, Seulbi;Park, Ae Ran;Kim, Jin-Cheol;Lee, Yerim;Kim, Youngmin;Choi, Eu Ddeum;Jeong, Min-Hye;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.294-296
    • /
    • 2021
  • An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.

Molecular Phylogeny and Morphology Reveal the Underestimated Diversity of Mortierella (Mortierellales) in Korea

  • Lee, Jae-Sung;Nam, Bora;Lee, Hyang Burm;Choi, Young-Joon
    • The Korean Journal of Mycology
    • /
    • v.46 no.4
    • /
    • pp.375-382
    • /
    • 2018
  • Members of the genus Mortierella (Mortierellales) are filamentous fungi, which are found on nearly all substrates, but more frequently in soil. Till date, 7 species of Mortierella have been reported in Korea, but being a ubiquitous group with high species diversity in temperate zones, this number is still low. During a survey of fungal biodiversity in Korea, we collected many isolates of Mortierella, and through morphological and molecular phylogenetic analyses, identified them to be 3 previously unrecorded species, namely, M. chienii, M. epicladia, and M. gamsii. A total of 10 Mortierella species in Korea, including the 3 species reported in the present study, are widely distributed in 5 out of 7 phylogenetic groups of this genus. This indicates that the diversity of Mortierella was so far underestimated in Korea. Multi-locus sequence analysis is required to provide a more reliable backbone for some uncertain phylogenetic groupings and to more clearly define a species of Mortierella, which would encourage deeper research in the diversity and ecological roles of Mortierella and allied genera.

Diversity and Bioactive Potential of Culturable Fungal Endophytes of Medicinal Shrub Berberis aristata DC.: A First Report

  • Sharma, Supriya;Gupta, Suruchi;Dhar, Manoj K.;Kaul, Sanjana
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.370-381
    • /
    • 2018
  • Bioactive natural compounds, isolated from fungal endophytes, play a promising role in the search for novel drugs. They are an inspiring source for researchers due to their enormous structural diversity and complexity. During the present study fungal endophytes were isolated from a well-known medicinal shrub, Berberis aristata DC. and were explored for their antagonistic and antioxidant potential. B. aristata, an important medicinal shrub with remarkable pharmacological properties, is native to Northern Himalayan region. A total of 131 endophytic fungal isolates belonging to eighteen species and nine genera were obtained from three hundred and thirty surface sterilized segments of different tissues of B. aristata. The isolated fungi were classified on the basis of morphological and molecular analysis. Diversity and species richness was found to be higher in leaf tissues as compared to root and stem. Antibacterial activity demonstrated that the crude ethyl acetate extract of 80% isolates exhibited significant results against one or more bacterial pathogens. Ethyl acetate extract of Alternaria macrospora was found to have potential antibacterial activity. Significant antioxidant activity was also found in crude ethyl acetate extracts of Alternaria alternata and Aspergillus flavus. Similarly, antagonistic activity of the fungal endophytes revealed that all antagonists possessed inhibition potential against more than one fungal pathogen. This study is an important step towards tapping endophytic fungal diversity for bioactive metabolites which could be a step forward towards development of novel therapeutic agents.

Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum

  • Lee, Seobihn;Park, Myung Soo;Lee, Hanbyul;Kim, Jae-Jin;Eimes, John A.;Lim, Young Woon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2019
  • Agarum clathratum, a brown macroalgae species, has recently become a serious environmental problem on the coasts of Korea. In an effort to solve this problem, fungal diversity associated with decaying A. clathratum was investigated and related ${\beta}$-glucosidase and endoglucanase activities were described. A total of 233 fungal strains were isolated from A. clathratum at 15 sites and identified 89 species based on morphology and a multigene analysis using the internal transcribed spacer region (ITS) and protein-coding genes including actin (act), ${\beta}$-tubulin (benA), calmodulin (CaM), and translation elongation factor (tef1). Acremonium, Corollospora, and Penicillium were the dominant genera, and Acremonium fuci and Corollospora gracilis were the dominant species. Fifty-one species exhibited cellulase activity, with A. fuci, Alfaria terrestris, Hypoxylon perforatum, P. madriti, and Pleosporales sp. Five showing the highest enzyme activities. Further enzyme quantification confirmed that these species had higher cellulase activity than P. crysogenum, a fungal species described in previous studies. This study lays the groundwork for bioremediation using fungi to remove decaying seaweed from populated areas and provides important background for potential industrial applications of environmentally friendly processes.

Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea

  • Park, Myung Soo;Lee, Jun Won;Kim, Sung Hyun;Park, Ji-Hyun;You, Young-Hyun;Lim, Young Woon
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.431-442
    • /
    • 2020
  • Penicillium, the most common genus plays an important ecological role in various terrestrial and marine environments. However, only a few species have been reported from rhizosphere soil. As part of a project to excavate Korean indigenous fungi, we investigated rhizosphere soil of six plants in the forest (terrestrial habitat) and sand dunes (coastal habitat) and focused on discovering Penicillium species. A total of 64 strains were isolated and identified as 26 Penicillium species in nine sections based on morphological characteristics and the sequence analysis of β-tubulin and calmodulin. Although this is a small-scale study in a limited rhizosphere soil, eight unrecorded species and four potential new species have been identified. In addition, most Penicillium species from rhizosphere soil were unique to each plant. Penicillium halotolerans, P. scabrosum, P. samsonianum, P. jejuense, and P. janczewskii were commonly isolated from rhizosphere soil. Eight Penicillium species, P. aurantioviolaceum, P. bissettii, P. cairnsense, P. halotolerans, P. kananaskense, P. ortum, P. radiatolobatum, and P. verhagenii were recorded for the first time in Korea. Here, we provide the detailed morphological description of these unrecorded species.

DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants

  • Hwi-Won Jeong;Tae Ho Ryu;Hyo-Jeong Lee;Kook-Hyung Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.449-465
    • /
    • 2023
  • Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense-and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.