Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.4.409

Specific PCR Detection of Four Quarantine Fusarium Species in Korea  

Hong, Sae-Yeon (Department of Medical Biotechnology, Soonchunhyang University)
Kang, Mi-Ran (Department of Medical Biotechnology, Soonchunhyang University)
Cho, Eun-Ji (Department of Medical Biotechnology, Soonchunhyang University)
Kim, Hee-Kyoung (Department of Medical Biotechnology, Soonchunhyang University)
Yun, Sung-Hwan (Department of Medical Biotechnology, Soonchunhyang University)
Publication Information
The Plant Pathology Journal / v.26, no.4, 2010 , pp. 409-416 More about this Journal
Abstract
Fusarium species, a large group of plant pathogens, potentially pose quarantine concerns worldwide. Here, we focus on the development of a method for detecting four Fusarium species in quarantined plants in Korea: F. solani f. sp. cucurbitae, F. stilboides, F. redolens, and F. semitectum var. majus. Species-specific primers were designed from the nucleotide sequences of either the translation elongation factor-1 alpha (TEF1) gene or RNA polymerase II subunit (RPB2) gene. Two different primer sets derived from TEF1, all specific to F. solani f. sp. cucurbitae, were able to differentiate the two races (1 and 2) of this species. A set of nested primers for each race was designed to confirm the PCR results. Similarly, two primer sets derived from RPB2 successfully amplified specific fragments from five F. stilboides isolates grouped within a single phylogenetic clade. A specific TEF1 primer set amplified a DNA fragment from only four of the 12 F. redolens strains examined, which were grouped within a single phylogenetic clade. All of the F. semitectum var. majus isolates could be specifically detected with a single RPB2 primer set. The specificity of the primer sets developed here was confirmed using a total of 130 Fusarium isolates.
Keywords
Fusarium; PCR detection; quarantine fungi; specific primers;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Kim, H. K., Lee, T. and Yun, S. H. 2008. A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet. Biol. 45: 1188-1196.   DOI   ScienceOn
2 Liu, Y. L., Whelen, S. and Hall, B. D. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol. Biol. Evol. 16:1799-1808.   DOI   ScienceOn
3 Mehl, H. L. and Epstein, L. 2007. Identification of Fusarium solani f. sp. cucurbitae race 1 and race 2 with PCR and production of disease-free pumpkin seeds. Plant Dis. 91:1288-1292.   DOI   ScienceOn
4 Mule, G., Susca, A., Stea, G. and Moretti, A. 2004. A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur. J. Plant Pathol. 110:495-502.   DOI
5 O’Donnell, K. and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103-116.   DOI   ScienceOn
6 O’Donnell, K., Kistler, H. C., Cigelnik, E. and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: Concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. USA 95:2044-2049.   DOI
7 Tamura, K., Dudley, J., Nei, M. and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI   ScienceOn
8 Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.   DOI
9 Baayen, R. P., O’Donnell, K., Bonants, P. J. M., Cigelnik, E., Kroon, L. P. N. M., Roebroeck, E. J. A. and Waalwijk, C. 2000. Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and non-monophyletic formae speciales causing wilt and rot diseases. Phytopathology 90:891-900.   DOI   ScienceOn
10 Bogale, M., Wingfield, B. D., Wingfield, M. J. and Steenkamp, E. T. 2007. Species-specic primers for Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of Fusarium oxysporum. FEMS Microbiol. Lett. 271:27-32   DOI   ScienceOn
11 Chi, M. H, Park, S. Y. and Lee, Y. H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111.   DOI   ScienceOn
12 Gerlach, W. and Nirenberg, H. I. 1982. The genus Fusarium-a pictoral atlas. Mitt Biol Bundesanst Land- Forstwirtsch, Berlin, Germany.
13 Hawa, M. M., Salleh, B. and Latiffah, Z. 2010. Characterization and intraspecific variation of Fusarium semitectum (Berkeley and Ravenel) associated with red-fleshed dragon fruit (Hylocereus polyrhizus [Weber] Britton and Rose) in Malysia. African J. Biotechnol. 9:273-284.
14 Geiser, D. M., Ivey, M. L. L., Hakiza, G., Juba, J. H. and Miller, S. A. 2005. Gibberella xylarioides (anamorph: F. xylarioides), a causative agent of coffee wilt disease in Africa, is a previously unrecognized member of the G. fujikuroi species complex. Mycologia 97:191-201.   DOI   ScienceOn