DOI QR코드

DOI QR Code

Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases

  • Wu, Jiayao (Department of Forest Sciences, University of Helsinki) ;
  • Choi, Jaeyoung (Smart Farm Research Center, Korea Institute of Science and Technology) ;
  • Asiegbu, Fred O. (Department of Forest Sciences, University of Helsinki) ;
  • Lee, Yong-Hwan (Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Plant Immunity Research Center, and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2020.04.27
  • 심사 : 2020.08.24
  • 발행 : 2020.10.31

초록

Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac. kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.

키워드

참고문헌

  1. Thurston CF. The structure and function of fungal laccases. Microbiology. 1994;140(1):19-26. https://doi.org/10.1099/13500872-140-1-19
  2. Giardina P, Faraco V, Pezzella C, et al. Laccases: a never-ending story. Cell Mol Life Sci. 2010;67(3):369-385. https://doi.org/10.1007/s00018-009-0169-1
  3. Gray HB, Malmstrom BG, Williams RJP. Copper coordination in blue proteins. J Biol Inorg Chem. 2000;5(5):551-559. https://doi.org/10.1007/s007750000146
  4. Leontievsky AA, Vares T, Lankinen P, et al. Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett. 1997;156(1):9-14. https://doi.org/10.1016/S0378-1097(97)00393-5
  5. Palmieri G, Giardina P, Bianco C, et al. A novel white laccase from Pleurotus ostreatus. J Biol Chem. 1997;272(50):31301-31307. https://doi.org/10.1074/jbc.272.50.31301
  6. Ausec L, Zakrzewski M, Goesmann A, et al. Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One. 2011;6(10):e25724. https://doi.org/10.1371/journal.pone.0025724
  7. Baldrian P. Fungal laccases - occurrence and properties. FEMS Microbiol Rev. 2006;30(2):215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  8. Sharma KK, Kuhad RC. An evidence of laccases in archaea. Indian J Microbiol. 2009;49(2):142-150. https://doi.org/10.1007/s12088-009-0039-4
  9. Hullo MF, Moszer I, Danchin A, et al. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol. 2001;183(18):5426-5430. https://doi.org/10.1128/JB.183.18.5426-5430.2001
  10. Sakasegawa S, Ishikawa H, Imamura S, et al. Bilirubin oxidase activity of Bacillus subtilis CotA. Appl Environ Microbiol. 2006;72(1):972-975. https://doi.org/10.1128/AEM.72.1.972-975.2006
  11. Pourcel L, Routaboul JM, Kerhoas L, et al. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell. 2005;17(11):2966-2980. https://doi.org/10.1105/tpc.105.035154
  12. Schuetz M, Benske A, Smith RA, et al. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem. Plant Physiol. 2014;166(2):798-807. https://doi.org/10.1104/pp.114.245597
  13. Hoopes JT, Dean JF. Ferroxidase activity in a laccase-like multicopper oxidase from Liriodendron tulipifera. Plant Physiol Biochem. 2004;42(1):27-33. https://doi.org/10.1016/j.plaphy.2003.10.011
  14. Frebortova J. Function of plant defense secondary metabolite in cytokinin degradation. Plant Signal Behav. 2010;5:523-525. https://doi.org/10.4161/psb.10965
  15. Chen S, Ge W, Buswell JA. Molecular cloning of a new laccase from the edible straw mushroom Volvariella volvacea: possible involvement in fruit body development. FEMS Microbiol Lett. 2004;230(2):171-176. https://doi.org/10.1016/S0378-1097(03)00878-4
  16. Zhang J, Chen H, Chen M, et al. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus. Microbiol Res. 2015;179:54-63. https://doi.org/10.1016/j.micres.2015.06.005
  17. Sun SJ, Liu JZ, Hu KH, et al. The level of secreted laccase activity in the edible fungi and their growing cycles are closely related. Curr Microbiol. 2011;62(3):871-875. https://doi.org/10.1007/s00284-010-9794-z
  18. Lin H, Hildebrand A, Kasuga T, et al. Engineering Neurospora crassa for cellobionate production directly from cellulose without any enzyme addition. Enzyme Microb Technol. 2017;99:25-31. https://doi.org/10.1016/j.enzmictec.2016.12.009
  19. Scherer M, Wei H, Liese R, et al. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eukaryotic Cell. 2002;1(5):725-735. https://doi.org/10.1128/EC.1.5.725-735.2002
  20. Ohga S, Royse DJ. Transcriptional regulation of laccase and cellulase genes during growth and fruiting of Lentinula edodes on supplemented sawdust. FEMS Microbiol Lett. 2001;201(1):111-115. https://doi.org/10.1111/j.1574-6968.2001.tb10741.x
  21. Holker U, Dohse J, Hofer M. Extracellular laccases in ascomycetes Trichoderma atroviride and Trichoderma harzianum. Folia Microbiol. 2002;47(4):423-427. https://doi.org/10.1007/BF02818702
  22. O'Hara EB, Timberlake WE. Molecular characterization of the Aspergillus nidulans yA locus. Genetics. 1989;121:249-254. https://doi.org/10.1093/genetics/121.2.249
  23. Scherer M, Fischer R. Molecular characterization of a blue-copper laccase, TILA, of Aspergillus nidulans. FEMS Microbiol Lett. 2001;199(2):207-213. https://doi.org/10.1111/j.1574-6968.2001.tb10676.x
  24. Nagai M, Kawata M, Watanabe H, et al. Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology. 2003;149(9):2455-2462. https://doi.org/10.1099/mic.0.26414-0
  25. Castro-Sowinski S, Martinez-Drets G, Okon Y. Laccase activity in melanin-producing strains of Sinorhizobium meliloti. FEMS Microbiol Lett. 2002;209(1):119-125. https://doi.org/10.1111/j.1574-6968.2002.tb11119.x
  26. Munk L, Sitarz AK, Kalyani DC, et al. Can laccases catalyze bond cleavage in lignin? Biotechnol Adv. 2015;33(1):13-24. https://doi.org/10.1016/j.biotechadv.2014.12.008
  27. Liers C, Arnstadt T, Ullrich R, et al. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol. 2011;78(1):91-102. https://doi.org/10.1111/j.1574-6941.2011.01144.x
  28. Eggert C, Temp U, Eriksson KE. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 1997;407(1):89-92. https://doi.org/10.1016/S0014-5793(97)00301-3
  29. Iakovlev A, Stenlid J. Spatiotemporal patterns of laccase activity in interacting mycelia of wooddecaying basidiomycete fungi. Microb Ecol. 2000;39(3):236-245.
  30. Pardo I, Camarero S. Laccase engineering by rational and evolutionary design. Cell Mol Life Sci. 2015;72(5):897-910. https://doi.org/10.1007/s00018-014-1824-8
  31. Mate DM, Alcalde M. Laccase: a multi-purpose biocatalyst at the forefront of biotechnology. Microb Biotechnol. 2017;10(6):1457-1467. https://doi.org/10.1111/1751-7915.12422
  32. Virk AP, Sharma P, Capalash N. Use of laccase in pulp and paper industry. Biotechnol Prog. 2012;28(1):21-32. https://doi.org/10.1002/btpr.727
  33. Kunamneni A, Plou FJ, Ballesteros A, et al. Laccases and their applications: a patent review. Recent Pat Biotechnol. 2008;2(1):10-24. https://doi.org/10.2174/187220808783330965
  34. Pezzella C, Guarino L, Piscitelli A. How to enjoy laccases. Cell Mol Life Sci. 2015;72(5):923-940. https://doi.org/10.1007/s00018-014-1823-9
  35. Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 2006;24(5):219-226. https://doi.org/10.1016/j.tibtech.2006.03.006
  36. Agrawal K, Chaturvedi V, Verma P. Fungal laccase discovered but yet undiscovered. Bioresour Bioprocess. 2018;5:4. https://doi.org/10.1186/s40643-018-0190-z
  37. Sirim D, Wagner F, Wang L, et al. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database. 2011;2011:bar006. https://doi.org/10.1093/database/bar006
  38. Weirick T, Sahu SS, Mahalingam R, et al. LacSubPred: predicting subtypes of laccases, an important lignin metabolism-related enzyme class, using in silico approaches. BMC Bioinformatics. 2014;15(S11):S15.
  39. The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45(D1):D158-D169. https://doi.org/10.1093/nar/gkw1099
  40. Mitchell AL, Attwood TK, Babbitt PC, et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 2019;47(D1):D351-D360. https://doi.org/10.1093/nar/gky1100
  41. Messerschmidt A, Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem. 1990;187(2):341-352. https://doi.org/10.1111/j.1432-1033.1990.tb15311.x
  42. Choi J, Cheong K, Jung K, et al. CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res. 2013;41(D1):D714-D719. https://doi.org/10.1093/nar/gks1163
  43. Min XJ. Evaluation of computational methods for secreted protein prediction in different eukaryotes. J Proteomics Bioinformatics. 2010;3:143-147.
  44. Petersen TN, Brunak S, von Heijne G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785-786. https://doi.org/10.1038/nmeth.1701
  45. Kall L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 2007;35:W429-W432. https://doi.org/10.1093/nar/gkm256
  46. Horton P, Park KJ, Obayashi T, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35:W585-W587. https://doi.org/10.1093/nar/gkm259
  47. Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567-580. https://doi.org/10.1006/jmbi.2000.4315
  48. de Castro E, Sigrist CJ, Gattiker A, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34:W362-W365. https://doi.org/10.1093/nar/gkl124
  49. Sigrist CJ, de Castro E, Cerutti L, et al. New and continuing developments at PROSITE. Nucleic Acids Res. 2013;41:D344-D347. https://doi.org/10.1093/nar/gks1067
  50. Crooks GE, Hon G, Chandonia JM, et al. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188-1190. https://doi.org/10.1101/gr.849004
  51. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792-1797. https://doi.org/10.1093/nar/gkh340
  52. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  53. Rambaut A. FigTree v1.4.4. 2018. Available from: https://github.com/rambaut/figtree/
  54. Perry CR, Smith M, Britnell CH, et al. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol. 1993;139(6):1209-1218. https://doi.org/10.1099/00221287-139-6-1209
  55. Knezevic A, Milovanovic I, Stajic M, et al. Lignin degradation by selected fungal species. Bioresour Technol. 2013;138:117-123. https://doi.org/10.1016/j.biortech.2013.03.182
  56. Xie N, Ruprich-Robert G, Silar P, et al. Characterization of three multicopper oxidases in the filamentous fungus Podospora anserina: a new role of an ABR1-like protein in fungal development? Fungal Genet Biol. 2018;116:1-13. https://doi.org/10.1016/j.fgb.2018.04.007
  57. Greenshields DL, Liu G, Feng J, et al. The siderophore biosynthetic gene SID1, but not the ferroxidase gene FET3, is required for full Fusarium graminearum virulence. Mol Plant Pathol. 2007;8(4):411-421. https://doi.org/10.1111/j.1364-3703.2007.00401.x
  58. Kues U, Ruhl M. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr Genomics. 2011;12(2):72-94. https://doi.org/10.2174/138920211795564377
  59. Sakurai T, Kataoka K. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec. 2007;7(4):220-229. https://doi.org/10.1002/tcr.20125
  60. Zhu X, Williamson PR. Role of laccase in the biology and virulence of Cryptococcus neoformans. FEMS Yeast Res. 2004;5(1):1-10. https://doi.org/10.1016/j.femsyr.2004.04.004
  61. Frandsen RJ, Schutt C, Lund BW, et al. Two novel classes of enzymes are required for the biosynthesis of aurofusarin in Fusarium graminearum. J Biol Chem. 2011;286(12):10419-10428. https://doi.org/10.1074/jbc.M110.179853
  62. Xie N, Chapeland-Leclerc F, Silar P, et al. Systematic gene deletions evidences that laccases are involved in several stages of wood degradation in the filamentous fungus Podospora anserina. Environ Microbiol. 2014;16(1):141-161. https://doi.org/10.1111/1462-2920.12253
  63. Poggeler S. Evolution of multicopper oxidase genes in coprophilous and non-coprophilous members of the order sordariales. Curr Genomics. 2011;12(2):95-103. https://doi.org/10.2174/138920211795564368
  64. Xu H, Lai YZ, Slomczynski D, et al. Mediatorassisted selective oxidation of lignin model compounds by laccase from Botrytis cinerea. Biotechnol Lett. 1997;19(10):957-960. https://doi.org/10.1023/A:1018378813312
  65. Throckmorton K, Lim FY, Kontoyiannis DP, et al. Redundant synthesis of a conidial polyketide by two distinct secondary metabolite clusters in Aspergillus fumigatus. Environ Microbiol. 2016;18(1):246-259. https://doi.org/10.1111/1462-2920.13007
  66. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421. https://doi.org/10.1186/1471-2105-10-421
  67. Piscitelli A, Giardina P, Lettera V, et al. Induction and transcriptional regulation of laccases in fungi. Curr Genomics. 2011;12(2):104-112. https://doi.org/10.2174/138920211795564331
  68. Cazares-Garcia SV, Vazquez-Garciduenas S, Vazquez-Marrufo G. Structural and phylogenetic analysis of laccases from Trichoderma: a bioinformatic approach. PLoS One. 2013;8:e55295. https://doi.org/10.1371/journal.pone.0055295
  69. Kim YR, Yu SW, Lee SR, et al. A heme-containing ascorbate oxidase from Pleurotus ostreatus. J Biol Chem. 1996;271(6):3105-3111. https://doi.org/10.1074/jbc.271.6.3105
  70. Frandsen RJ, Nielsen NJ, Maolanon N, et al. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol. 2006;61(4):1069-1080. https://doi.org/10.1111/j.1365-2958.2006.05295.x
  71. Hoegger PJ, Kilaru S, James TY, et al. Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. Febs J. 2006;273(10):2308-2326. https://doi.org/10.1111/j.1742-4658.2006.05247.x
  72. Ouzounis C, Sander C. A structure-derived sequence pattern for the detection of type I copper binding domains in distantly related proteins. FEBS Lett. 1991;279(1):73-78. https://doi.org/10.1016/0014-5793(91)80254-Z
  73. Askwith C, Eide D, Van Ho A, et al. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994;76(2):403-410. https://doi.org/10.1016/0092-8674(94)90346-8
  74. Janusz G, Pawlik A, Sulej J, et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev. 2017;41(6):941-962. https://doi.org/10.1093/femsre/fux049
  75. Cragg SM, Beckham GT, Bruce NC, et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr Opin Chem Biol. 2015;29:108-119. https://doi.org/10.1016/j.cbpa.2015.10.018

피인용 문헌

  1. The Comparative Abilities of a Small Laccase and a Dye-Decoloring Peroxidase From the Same Bacterium to Transform Natural and Technical Lignins vol.12, 2020, https://doi.org/10.3389/fmicb.2021.723524
  2. The Role of Laccase from Zygomycetous Fungus Mortierella elasson in Humic Acids Degradation vol.11, pp.11, 2021, https://doi.org/10.3390/agronomy11112169
  3. Multidimensional redox potential/pKa coupling in multicopper oxidases from molecular dynamics: implications for the proton transfer mechanism vol.23, pp.48, 2020, https://doi.org/10.1039/d1cp03095g