• Title/Summary/Keyword: Toluene diisocyanate

Search Result 74, Processing Time 0.024 seconds

Synthesis and Photopolymerization Kinetics of Polyether Urethane Methacrylate Oligomers (폴리에테르 우레탄 메타아크릴레이트 올리고머의 합성 및 광중합 동역학)

  • Oh, Sungae;Park, Kwangbae;Park, Chanik;Bae, Won
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2006
  • In this study, photo-cuarable urethane methacrylate oligomers were synthesized from polyether type polyol (PP series, GP series), isocyanate (2,4-toluene diisocyanate) and hydroxy acrylate (hydroxypropyl methacrylate). We measured basic property including color, viscosity and refractive index of resulting urethane methacrylate. Also we measured tensile strength, elongation, and Young's modulus after photo curing. Photo curing speed was investigated using photo-DSC (TA instrument). In the case of similar polyol structure, as the molecular weight of polyol is increased, tensile strength, Young's modulus, curing rate were decreased, but elongation was increased. As the number of functionality of urethane methacrylate oligomer is increased, tensile strength, Young's modulus, curing rate were increased, but elongation was decreased.

  • PDF

A Non-radioisotopic Endpoint Using Bromodeoxyuridine ELISA Method for Murine Local Lymph Node Assay (BrdU ELISA를 이용한 국소 림프절 시험법의 비방사선법 연구)

  • 이종권;박재현;박승희;김형수;정승태;엄준호;윤소미;장은정;최광식
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.133-139
    • /
    • 2003
  • Allergic contact dermatitis may be caused by a wide variety of chemicals. A murine local lymph node assay (LLNA) has been developed as an alternative to guinea pig models for assessing the contact sensitization potential of chemical. However, there is a need to develop a nonradioisotopic endpoint for the LLNA, because of the radioisotopic method's requiring the use of special facilities. In this study, we investigated the development of a nonradioisotopic endpoint for LLNA using ELISA (enzyme-linked immunosorbent assay). Female Balb/c mice were treated by the topical application on the dorsum of both ears with four different strong sensitizers, 2,4-dinitrochlorobenzene (DNCB), oxazolone (OXZ), toluene diisocyanate (TDI), and trimellitic anhydride (TMA), and a strong irritant, sodium lauryl sulfate (SLS), once daily for three consecutive days. The proliferation of cells in the auricular Iymph node was analyzed by means of the labelling index (Ll) of bromodeoxyuridine (BrdU) incorporation into cells. The weights of the Iymph nodes in the mice treated with allergens, DNCB, OXZ, TDl and TMA were increased compared to the vehicle control. The stimulation index (Sl) of mice treated with DNCB, OXZ, TDl, and TMA was over three-fold increase compared to the vehicle control. However, the S1 of mice exposed to SLS was not significantly increased compared to the vehicle control, while the lymph node weight of SLS was significantly increased. These results suggest that the LLNA modified endpoint using ELISA based on BrdU incorporation could provide a useful method of screening for irritants and allergens.

Preparation of Water Repellent Polyurethane Coating Films Using Perfluoroalkyl Alcohol (과불화 알코올을 이용한 발수성 폴리우레탄 코팅 필름의 제조)

  • Kim, Nam Woo;Ahn, Chi Young;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.387-393
    • /
    • 2016
  • Fluorinated polyurethane coating solutions were synthesized from perfluoroalkyl alcohol, toluene diisocyanate, and polycarbonate diol as starting materials. Next, coating films were prepared by spin-coating the fluorinated polyurethane coating solutions on the PC substrates, followed by thermal curing at $120^{\circ}C$. The obtained fluorinated polyurethane coating films were characterized by FT-IR spectroscopy, UV-Vis spectrometer, contact angle tester and pencil hardness tester. Contact angle measurements of water on the coating films showed that the addition of perfluoroalkyl alcohol improved the water repellency and increased the contact angle from $81^{\circ}C$ to $111^{\circ}C$. However, the pencil hardness of coating films exhibited a constant grade of H, irrespective of the addition of perfluoroalkyl alcohol.

Polyarylate-Nylon 6 Block Copolymers : Synthesis and Its Miscibility in Binary Blends with Polyarylate or Nylon 6 Homopolymer (폴리아릴레이트-나일론 6 블록공중합체 : 합성 및 폴리아릴레이트 혹은 나일론 6 단일중합체와의 상용성)

  • Ahn, Tae-Oan;Lee, Suk-Min;Jeong, Han-Mo;Lee, Sang-Won
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.349-357
    • /
    • 1993
  • Polyarylate(PAR)-nylon 6 block copolymers of various block lengths were prepared by the anionic polymerization of ${\varepsilon}$-caprolactam using the polymeric activator from hydroxy-difuncrtional PAR and toluene diisocyanate. Phase separated morphology of PAR-nylon 6 block copolymer was suggerted from the thermal properties measured by differential scanning calorometry(d.s.c.). Partial miscbility between PAR block and nylon 6 block of the block copolymers was more evident at shorter length of constituent blocks. In binary blends of PAR-nylon 6 block copolymer with PAR or nylon 6 homopolymer, molecular-level mixing of homopolymers with corresponding blocks of block copolymer was supposed from the thermal properties measured by d.s.c..

  • PDF

Preparation and Property of POSS-Based Organic-Inorganic Hybrid Filler and Polyamide Thermoplastic Elastomer (PA-TPE)/POSS Nanocomposite (POSS 기반 유-무기 하이브리드 충전제와 폴리아미드계 TPE로 이루어진 나노복합체의 제조 및 특성)

  • Han, Jae Hee;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Commercially available polyamide thermoplastic elastomer (PA-TPE) was blended with hybrid filler which was prepared by means of the reaction between polyhedral oligomeric silsesquioxane (POSS) containing amine group and toluene diisocyanate (TDI)-caprolactam (CL) to explore the effect of blending the hybrid filler with the TPE. The chemical structure of the filler was identified by using FTIR and $^1H$ NMR. The composites, PA-TPE/POSS-(TDI+CL), which were the blends of TDI+CL modified POSS filler and PA-TPE up to 7 wt%, showed better elastic recovery delivered from lower tension setting compared to the PA-TPE and the PA-TPE/octaphenyl POSS blend. In addition the tensile strength and the initial modulus increased with increasing the hybrid filled content. Consequently it was assumed that the POSS-(TDI+CL) filler was a suitable material for enhancing strength and modulus without loss of elastic properties for the original PA-TPE.

Electrical Properties and Characterization of 3-Methylthiophene Impregnated Polyurethane films (3-Methylthiophene이 함유된 폴리우레탄 필름의 전기적 특성 연구)

  • Choi, Sei-Young;Choi, Kyo-Chang;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.234-243
    • /
    • 2004
  • The elastomeric and conductive polyurethane (PU) films were prepared by poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT) at various preparation conditions, such as the reaction time, the $FeCl_3$ concentration, the weight ratio of the 3-MT to PU and the reaction temperature for the diffusion-oxidative reaction. The conductive poly (3-methylthiophene) (PMT) layers via the diffusion-oxidative reaction of 3-MT and ferric chloride were formed by immersing the film in organic solution of $FeCl_3$/ethyl acetate. The preparation conditions greatly affected the electrical conductivity of the 3-MT/PU composite. The effects of the reaction time and temperature on morphology and surface free energy were investigated by scanning electron microscopy (SEM) analysis and contact angle measurement, respectively. The conductivity of the composite was as high as 42 S/cm.

Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol (환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론)

  • Kim, Taehoon;park, Sungyurb;Park, Sunghoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1079-1084
    • /
    • 1998
  • Reaction kinetics between 4,4'-dihexyl methane diisocyanate($H_{12}MDI$) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.

  • PDF

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber (폴리(메틸 메타크릴레이트)-개질된 전분과 스티렌-부타디엔 고무의 혼합에서 커플링제 메틸렌 디이소시아네이트의 효과)

  • Li, Mei-Chun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.117-126
    • /
    • 2014
  • Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.

Oil Absorptive Properties of Polypropylene Knit Fabric Treated with Oleophilic Acrylic Resin (친유성 아크릴 수지로 처리된 폴리프로필렌 편직물의 유흡착 성질)

  • Jeong, Hwa-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.528-535
    • /
    • 2016
  • Two types of oleophilic acrylic prepolymers were prepared by the solution copolymerization of either ethyl acrylate (EA) or lauryl acrylate (LA) with hydroxy ethyl acrylate (HEA). For the formation of oil-absorbent materials, a mixed solution of the prepolymer and hexamethylene diisocyanate (HDI) as a cross-linker in toluene was applied to polypropylene knit velvet fabric through the conventional pad-dry-cure procedure. The gel fraction of the crosslinked resin, EA-HEA-HDI, increased with increasing feed ratio of HEA to total acrylate or HDI concentration. The oil absorbancy and retention ratio of the prepared materials were compared according to the add-on ratio of resin to fabric, and were assessed with n-decane, toluene, soybean oil, lubricant and bunker C oil as test oils. The optimal oil absorbancy of the materials were observed at around 6% of the add-on ratio for all these oils except for soybean oil. On the other hand, the oil retention ratio increased as the add-on ratio increased. Futhermore, heavier and more viscous oil generally showed higher oil retention ratios. In addition, the oil absorbancy of the materials treated with LA-HEA-HDI resin was higher than that treated with EA-HEA-HDI resin, which showed that the acrylic resins are more absorptive with increasing length of their side alkyl chain.

Effect of NCO/OH ratio and binder content with micro-AP on HTPB/AP/Al-based propellants mechanical properties

  • Zulfam Adnan;Nurul Musfirah Mazlan
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.129-140
    • /
    • 2024
  • This study evaluates the ratio of Toluene di-isocyanate (TDI) functional group isocyanate (NCO) to the binder functional hydroxyl group (OH) in HTPB/AP/Al-based propellants on their mechanical properties, flow rate, and viscosity to determine the limitations of NCO/OH in the composition of solid propellants. The propellants consisted of hydroxyl-terminated polybutadiene (HTPB) polyurethane (PU), aluminum (Al) and tri-modal ammonium perchlorate (AP). The tri-modal AP consisted of 30% of coarse AP, 30% of medium AP, and 8% of fine AP. The ratio of NCO/OH varies from 0.73 to 0.85, with two binder percentages of 10.5% and 12%. An increase in NCO/OH ratio with 10.5% binder provided 20%, 95%, and 8 to 9% increments in UTS, modulus, and hardness, respectively. However, the propellant elongation, density, and flow rate decreased by 170%, 0.2%, and 11-12%, respectively. Viscosity increased 20% based on initial hour reading. The 12% binder provides 27%, 47%, and 5~6% an increment of UTS, modulus and hardness respectively. However, the propellant elongation, density, and flow rate decreased by 47%, 0.17% and 27%, respectively. The viscosity increased 30% based on initial hour reading. This study suggests the NCO/OH value of 0.77 and 10.5~11% binder content in propellant based on the mechanical properties, flow rate, and viscosity for better processing and pot life.