Browse > Article
http://dx.doi.org/10.7473/EC.2014.49.2.117

Effect of Coupling Agent, Methylene Diisocyanate, in the Blending of Poly(methyl methacrylate)-Modified Starch and Styrene-Butadiene Rubber  

Li, Mei-Chun (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Cho, Ur Ryong (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Publication Information
Elastomers and Composites / v.49, no.2, 2014 , pp. 117-126 More about this Journal
Abstract
Methylene diisocyanate (MDI) was investigated as a novel interfacial modifier to enhance the performances of poly(methyl methacrylate)-modified starch/styrene-butadiene rubber (PMMA-modified starch/SBR) composites. Owing to the formation urethane linkage on one side and ${\pi}-{\pi}$ adhesion on the other side, MDI acted as an intermediated linkage role in the PMMA-modified starch/SBR interfaces, which was evidenced by the morphological, mechanical, dynamic mechanical and thermal decomposition studies. As a result, the presence of MDI significantly improved the mechanical properties and thermal stability of PMMA-modified starch/SBR composites. In addition, the effect of starch concentration on the various performances of the resulted MDI/PMMA-modified starch/SBR composites, such as morphology, vulcanization characteristics, mechanical properties, toluene swelling behavior, and thermal stability were investigated and discussed in detail. The obtained MDI/PMMA-modified starch/SBR composites exhibited superior mechanical properties to carbon black/SBR (CB/SBR) composites, demonstrating the potential use of the renewable starch as a substitute for CB in the rubber compounds.
Keywords
SBR; starch; methylene diisocyanate; interfaces;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E. Guth, O. Gold, "On the hydrodynamical theory of the viscosity of suspensions". Phys. Rev., 53, 322 (1938).
2 J. C. Halpin, "Stiffness and expansion estimates for oriented short-fiber composites", J. Compos. Mater., 3, 732 (1969).
3 Z. Wang, J. Liu, S. Wu, W. Wang, L. Zhang, "Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers", Phys. Chem. Chem. Phys., 12, 3014 (2010).   DOI   ScienceOn
4 A. P. Mathew, S. Packirisamy, S. Thomas, "Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis", Polym. Degrad. Stab., 72, 423 (2001).   DOI   ScienceOn
5 S. J. Park, K. S. Cho, "Filler-elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites", J. Colloid Interf. Sci., 267, 86 (2003).   DOI   ScienceOn
6 J. L. Willett, "Mechanical properties of LDPE/granular starch composites", J. Appl. Polym. Sci., 54, 1685 (1994).   DOI   ScienceOn
7 W. B. Wennekes, J. W. M. Noordermeer, R. N. Datta, "Mechanistic investigations into the adhesion between RFL-treated cords and rubber. part I: the Influence of rubber curatives", Rubber Chem. Technol., 80, 545 (2007).   DOI
8 L. D. Perez, M. A. Zuluaga, T. Kyu, J. E. Mark, B. L. Lopez, "Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites", Polym. Eng. Sci., 49, 866 (2009).   DOI   ScienceOn
9 L. Bokobza, "Multiwall carbon nanotube-filled natural rubber: electrical and mechanical properties", Express Polym. Lett., 6, 213 (2012).   DOI
10 S. Praveen, P. K. Chattopadhyay, P. Albert, V. G. Dalvi, B. C. Chakraborty, S. Chattopadhyay, "Synergistic effect of carbon black and nanoclay fillers in styrene butadiene rubber matrix: development of dual structure, Compos. Part A, 40, 309 (2009).   DOI   ScienceOn
11 P. H. Sandstrom, "Rubber containing starch reinforcement and tire having component thereof", U. S. Patent 6, 391, 1945 (2001).
12 A. K. Bledzki, J. Gassan, "Composites reinforced with cellulose based fibres", Prog. Polym. Sci., 24, 221 (1999).   DOI   ScienceOn
13 D. Maldas, B. V. Kokta, C. Daneaulf," Influence of coupling agents and treatments on the mechanical properties of cellulose fiber-polystyrene composites", J. Appl. Polym. Sci., 37, 751 (1989).   DOI
14 P. J. Flory, J. Rehner, "Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling", J. Chem. Phys., 11, 512 (1943).   DOI
15 T. Ohkita, S. H. Lee, "Effect of aliphatic isocyanates (HDI and LDI) as coupling agents on the properties of eco-composites from biodegradable polymers and corn starch", J. Adhes. Sci. Technol., 18, 905 (2004).   DOI
16 T. Ohkita, S. H. Lee, "Thermal degradation and biodegradability of poly (lactic acid)/corn starch composites", J. Appl. Polym. Sci., 100, 3009 (2006).   DOI   ScienceOn
17 S. H. Lee. S. Wang, "Biodegradable polymers/bamboo fiber composites with bio-based coupling agent", Compos. Part A, 37, 80 (2006).   DOI   ScienceOn
18 M. C. Li, X. Ge, U. R. Cho, "Emulsion grafting vinyl monomers onto starch for reinforcement of styrene-butadiene rubber", Macromol. Res., 21, 519 (2013).   DOI   ScienceOn
19 M. Kotal, S. K. "Srivastava, Synergistic effect of organomodification and isocyanate grafting of layered double hydroxide in reinforcing properties of polyurethane nanocomposites", J. Mater. Chem., 21, 18540 (2011).   DOI   ScienceOn
20 K. C. M. Nair, S. Thomas, "Effect of interface modification on the mechanical properties of polystyrene-sisal fiber composites", Polym. Compos., 24, 332 (2003).   DOI   ScienceOn
21 M. C. Li, X. Ge, U. R. Cho, "Mechanical performance, water absorption behavior and biodegradability of poly (methyl methacrylate)-modified starch/SBR composites", Macromol. Res., 21, 793 (2013).   DOI   ScienceOn
22 K. Wilpiszewska, T. Spychaj, "Chemical modification of starch with hexamethylene diisocyanate derivatives", Carbohyd. Polym., 70, 334 (2007).   DOI   ScienceOn
23 M. C. Li, U. R. Cho, "Effectiveness of coupling agents in the poly (methyl methacrylate)-modified starch/styrene-butadiene rubber interfaces", Matter. Lett., 92, 132 (2013).   DOI   ScienceOn
24 H. Wang, X. Sun, P. Seib, "Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate", J. Appl. Polym. Sci., 82, 1761 (2001).   DOI   ScienceOn
25 Z. H. Ooi, H. Ismail, A. A. Bakar, "Synergistic effect of oil palm ash filled natural rubber compound at low filler loading, Polym. Test., 32, 38 (2013).   DOI   ScienceOn
26 X. Cao, C. Xu, Y. Wang, Y. Liu, Y. Chen, "New nanocomposite materials reinforced with cellulose nanocrystals in nitrile rubber", Polym. Test., 32, 819 (2013).   DOI   ScienceOn
27 H. Ismail, S. M. Shaari, N. Othman, "The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds", Polym. Test., 30, 784 (2011).   DOI   ScienceOn
28 Z. A. M. Ishak, H. Ismail, "An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR)", Eur. Polym. J., 31, 259 (1995).   DOI   ScienceOn
29 F. G. Corvasce, T. D. Linster, G. Thielen, "Starch composite reinforced rubber composition and tire with at least one component thereof", U. S. Patent 5, 672, 639 (1997).
30 C. Nakason, A. Kaesaman, K. Eardrod. "Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)-cassava starch compounds", Matter. Lett., 59, 4020 (2005).   DOI   ScienceOn
31 P. M. Visakh, S. Thomas, K. Oksman, A. P. Mathew, "Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/ thermal properties", Compos. Part A, 43, 735 (2012).   DOI   ScienceOn
32 C. Liu, Y. Shao, D. Jia, "Chemically modified starch reinforced natural rubber composites", Polymer, 49, 2176 (2008).   DOI   ScienceOn
33 Y. P. Wu, M. Q. Ji, Q. Q, Y. Q. Wang, L. Q. Zhang, "Preparation, structure, and properties of starch/rubber composites prepared by co-coagulating rubber latex and starch paste", Macromol. Rapid. Commun., 26, 565 (2004).
34 B. Kosikova, A. Gregorova, A. Osvald, J. Krajcovicova, "Role of lignin filler in stabilization of natural rubber-based composites", J. Appl. Polym. Sci., 103, 1226 (2007).   DOI   ScienceOn
35 Y. P. Wu, Q. Qi, G. H. Liang, L. Q. Zhang, "A strategy to prepare high performance starch/rubber composites: In situ modification during latex compounding process", Carbohyd. Polym., 65, 109 (2006).   DOI   ScienceOn
36 H. Tang, Q. Qi, Y. P. Wu, G. Liang, L. Q. Zhang, J. Ma, "Reinforcement of elastomer by starch", Macromol. Mater. Eng., 291, 629 (2006).   DOI   ScienceOn
37 Q. Qi, Y. P. Wu, M. Tian, G. H. Liang, L. Q. Zhang, J. Ma, "Modification of starch for high performance elastomer", Polymer, 47, 3896 (2006).   DOI   ScienceOn
38 E. Guth, "Theory of filler reinforcement", J. Appl. Phys., 16, 20 (1945).   DOI
39 I. Zaman, T. T. Phan, H. C. Kuan, Q. Meng, L. T. B. La, L. Luong, O. Youssf, J. Ma, Polymer, 52, 1603 (2011).   DOI   ScienceOn
40 C. A. Rezende, F. C. Braganca, T. R. Doia, L.-T. Lee, F. Galembeck, F. Boue, "Natural rubber-clay nanocomposites: mechanical and structural properties", Polymer, 51, 3644 (2010).   DOI   ScienceOn