DOI QR코드

DOI QR Code

POSS 기반 유-무기 하이브리드 충전제와 폴리아미드계 TPE로 이루어진 나노복합체의 제조 및 특성

Preparation and Property of POSS-Based Organic-Inorganic Hybrid Filler and Polyamide Thermoplastic Elastomer (PA-TPE)/POSS Nanocomposite

  • 한재희 (공주대학교 신소재공학부 고분자공학전공) ;
  • 김형중 (공주대학교 신소재공학부 고분자공학전공)
  • Han, Jae Hee (Department of Advanced Polymer Material Engineering, Major in Polymer Engineering, Kong-ju National University) ;
  • Kim, Hyung Joong (Department of Advanced Polymer Material Engineering, Major in Polymer Engineering, Kong-ju National University)
  • 투고 : 2012.07.24
  • 심사 : 2012.10.08
  • 발행 : 2013.01.25

초록

아민 작용기를 가진 POSS에 toluene diisocyanate(TDI)와 caprolactam(CL)의 반응물을 반응시켜 POSS 기반의 하이브리드 충전제(POSS-(TDI+CL))를 합성하였고 이를 상업용 폴리아미드계 열가소성 탄성체인 PA-TPE에 블렌딩하여 PA-TPE/POSS-(TDI+CL) 복합체를 제조하였다. POSS계 충전제의 화학구조는 FTIR과 $^1H$ NMR을 사용하여 확인하였다. PA-TPE/POSS-(TDI+CL) 복합체는 충전제를 PA-TPE에 7 wt%까지 첨가하여 제조하였고 이들은 순수 PA-TPE와 변성되지 되지 않은 PA-TPE/octaphenyl POSS의 복합체보다 낮은 tension set 값을 보여 탄성회복력이 향상되었다. 또한 하이브리드 충전제의 함량이 증가함에 따라 인장강도와 모듈러스가 증가하였다. 결론적으로 하이브리드 충전제인 POSS-(TDI+CL)는 원래 PA-TPE의 탄성에 나쁜 영향을 미치지 않고도 기계적 물성을 향상시킬 수 있는 적절한 충전제라 볼 수 있다.

Commercially available polyamide thermoplastic elastomer (PA-TPE) was blended with hybrid filler which was prepared by means of the reaction between polyhedral oligomeric silsesquioxane (POSS) containing amine group and toluene diisocyanate (TDI)-caprolactam (CL) to explore the effect of blending the hybrid filler with the TPE. The chemical structure of the filler was identified by using FTIR and $^1H$ NMR. The composites, PA-TPE/POSS-(TDI+CL), which were the blends of TDI+CL modified POSS filler and PA-TPE up to 7 wt%, showed better elastic recovery delivered from lower tension setting compared to the PA-TPE and the PA-TPE/octaphenyl POSS blend. In addition the tensile strength and the initial modulus increased with increasing the hybrid filled content. Consequently it was assumed that the POSS-(TDI+CL) filler was a suitable material for enhancing strength and modulus without loss of elastic properties for the original PA-TPE.

키워드

참고문헌

  1. J. S. Shelley, P. T. Mather, and K. L. DeVriesc, Polymer, 42, 5849 (2001). https://doi.org/10.1016/S0032-3861(00)00900-9
  2. F. Yang, Y. Ou, and Z. Yu, Polym. Sci., 69, 355 (1998).
  3. K. M. Kim, Polymer Science and Technology, 20, 131 (2009).
  4. Hybrid $Plastics^{(R)} Home page, http://www.hybridplastics.com/ (November 9, 2011), Printable Documents, Products & Services.
  5. K. B. Yoon and D. H Lee, Polymer Science and Technology, 16, 833 (2005).
  6. H. J. Kim, Korean Chem. Eng. Res., 49, 460 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  7. K. S. Lee, M. C. Choi, S. M. Kim, and Y. W. Chang, Elastomers and Composites, 45, 156 (2010).
  8. J. S. Kang and H. S. Seo, Rubber Technology, 5, 16 (2004).
  9. L. Zhang, D. Lu, K. Tao, and R. Bai, Macromol. Rapid Commun., 30, 1015 (2009). https://doi.org/10.1002/marc.200900042
  10. L. Ricco, S. Russo, O. Monticelli, A. Bordo, and F. Bellucci, Polymer, 46, 6810 (2005). https://doi.org/10.1016/j.polymer.2005.06.003
  11. H. Guo, M. A. B. Meador, L. McCorkle, D. J. Quade, J. Guo, B. Hamilton, M. Cakmak, and G. Sprowl, ACS Appl. Mater. Interfaces, 3, 546 (2011). https://doi.org/10.1021/am101123h
  12. S. K. Yadav, S. S. Mahapatra, H. J. Yoo, and J. W. Cho, Nanoscale Res. Lett., 6, 122 (2011). https://doi.org/10.1186/1556-276X-6-122
  13. A. Ullah, J. Alongi, and S. Russo, Polym. Bull., 67, 1169 (2010).
  14. M. Bertoldo, C. Cappelli, S. Catanorchi, V. Liuzzo, and S. Bronco, Macromolecules, 38, 1385 (2005). https://doi.org/10.1021/ma0480998
  15. R. Ukielski, Polymer, 41, 1893 (2000). https://doi.org/10.1016/S0032-3861(99)00304-3
  16. H. Xu, S. W. Kuo, J. S. Lee, and F. C. Chang, Macromolecules, 35, 8788 (2002). https://doi.org/10.1021/ma0202843
  17. R. A. Auras, B. Harte, S. Selke, and R. Hernandez, Plastic Film and Sheeting, 19, 123 (2003). https://doi.org/10.1177/8756087903039702
  18. P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, K. Friess, P. Izak, V. Jarmarova, M. Kacirkova, and G. Clarizia, Sep. Purif. Technol., 97, 73 (2012). https://doi.org/10.1016/j.seppur.2012.02.041
  19. R. L. Miller, "Crystallographic Data and Melting Points for Various Polymers", in Polymer Handbook, 4rh ed., J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, Editors, John Wiley & Sons, Hoboken, New Jersey, USA, VI/1-92 (1999).
  20. A. Lee and J. D. Lichtenhan, Macromolecules, 31, 4970 (1998). https://doi.org/10.1021/ma9800764
  21. S. R. Jin, Master's Thesis, Kumoh National Institute of Technology (2011).
  22. A. Fina, D. Tabuani, A. Frache, and G. Camino, Polymer, 46, 7855 (2005). https://doi.org/10.1016/j.polymer.2005.06.121
  23. H. Liu and S. Zheng, Macromol. Rapid Commun., 26, 196 (2005). https://doi.org/10.1002/marc.200400465
  24. I. K. Yang and P. H. TSAI, J. Polym. Sci. Part B: Polym. Phys., 43, 2557 (2005). https://doi.org/10.1002/polb.20550
  25. S. H. Phillips, T. S. Haddad, and S. J. Tomczak, Curr. Opin. Solid St. M., 8, 21 (2004). https://doi.org/10.1016/j.cossms.2004.03.002
  26. S. J. Choi, K. H. Yoon, H. S. Kim, S. Y. Yoo, and Y. C. Kim, Polymer(Korea), 35, 356 (2011).