• Title/Summary/Keyword: Tolerance Design

Search Result 796, Processing Time 0.026 seconds

Robust Design considering Tolerance Bands of Design Variables and Material Properties (설계변수 및 물성치의 공차영역을 고려한 강건설계)

  • 안병철;이종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.419-426
    • /
    • 2001
  • Industrial products determined by fixed size posses definite limits variety by manufacture tolerance in existence. The optimum value solved by deterministic approaches do not account of tolerance bands of design variables and material properties. If we examine optimum value considering tolerance bands of design variables and material properties, it might be useless, owing to exist infeasible region. We have two ways to prevent being useless value. The one is to minimize tolerance band, the other is to consider tolerance band in optimum design. The former needed more accuracy during manufacturing process require higher production cost, the letter is more appropriate to consider tolerance band. In this research, we consider the tolerance bands of all variables, which might have the tolerance bands used in the problem, based on optimum value of deterministic approaches. Orthogonal arrays are used to minimize the number of trial. Tolerance bands are supposed discretionary according to design variable. Appropriateness suggested by this research is examined through two examples. Mathematical problem is investigated only in terms of tolerance bands of design variables, and cantilever beam problem is explained through tolerance bands of design variable, material properties and loading conditions. It is proved that values from the presented method are satisfactory for tolerance bands of variables.

  • PDF

Development of the Tolerance Design System for a Gear Drive (치차 장치를 위한 공차 설계 시스템 개발)

  • 정태형;정진욱
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2713-2722
    • /
    • 2000
  • When designing a gear drive, designers should specify tolerances reasonably considering accuracy, cost, and manufacturing capability. In field design, however, designers mostly assign adequate tolerance without correlations between parts and assembly, resulting in iterative design dependent on experts know-how. In order to resolve this, the tolerance design system for a cylindrical gear drive is developed both to support tolerance design automation and to synthesize design processes of part and assembly tolerances. In this research, part tolerances are designed with the databases constructed by ISO, Ks, JIS and bearing catalogue, Assemble tolerance, that is, backlash tolerance is designed by synthesizing part design tolerances stochastically using the formulated assembly relations. This system can include part tolerance and fitting accuracy of shaft adn bearing in practical design. In addition, this system provides field-designers with a synthetic guideline for tolerance design of a gear drive.

Case of Integrated tolerance design process by Engineering tolerance design and 6 Sigma Tolerance Design - Spindle Motor For Optical Disc Drive - (공학공차설계와 6시그마 공차설계를 통합한 공차설계 적용 사례 - 광학 디스크 드라이브 스핀들 모터 -)

  • Kim, Yongtae;Ree, Sangbok
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.563-578
    • /
    • 2014
  • Purpose: The purpose of this paper is integrated tolerance design process by advantages of engineering design and 6 sigma statistical tolerances design. Methods: Integrated tolerance design process can determine the goals by using engineer's experience and clarify tolerance by 6 Sigma statistical methods. Integrated design process can be applied by using non-linear simulations. Results: We applied integrated design process to the optical disc drive spindle motor and get good result. Conclusion: If this method is applied test method in the early stages of development, then Design can be reduced development time and cost.

Tolerance Design for Multiple Performance Characteristics (다수 성능특성치의 허용차설계)

  • Byun, Jai-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.99-111
    • /
    • 1994
  • Toguchi method is a systematic technique for designing high quality product at low cost. There are three steps in the Toguchi method, 1)system design, 2)parameter design, and 3)tolerance design. This paper considers the tolerance design for multiple performance characteristics which is practically important. We present two tolerance design procedures : grade selection and tolerance determining procedures. In grade selection procedure a scheme is presented that minimizes the sum of the price of low-level characteristics and the expected loss due to the variations of high-level characteristics. In tolerance determining procedure we determine the tolerances of the low-level characteristics.

  • PDF

Optimal Tolerance Design within Limited Costs using Genetic Algorithm (유전 알고리즘을 이용한 한계비용내의 최적 공차 설계)

  • 장현수;이병기;김선호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.49
    • /
    • pp.33-41
    • /
    • 1999
  • The original tolerances, which are assigned by designers on the basis of handbooks and experience, cannot always be expected to be optimal or feasible, because they may yield an unacceptable manufacturing costs. So the systematic tolerance design considering manufacturing costs should be done. Therefore, this research analyzes the tolerance within the tolerance design using Monte-Carlo simulation method and sensitivity analysis and using genetic algorithm by tolerance allocation method. The genetic algorithm was developed for allocation of the optimal tolerance under the manufacturing limitation cost.

  • PDF

Tolerance allotment with Design Centering considering Assembly Yield (조립수율을 고려한 공차할당 및 가공중심 결정)

  • 이진구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The purpose of this research was developing an integrated way to solve two typical tolerance optimization problem i.e. optimal tolerance allotment and design centering. A new problem definition design centering-tolerance allotment problem (DCTA) was proposed here for the first time and solved. Genetic algorithm and coarse Monte Carlo simulation were used to solve the stochastic optimization problem. Optimal costs were compared with the costs from the previous optimization strategies Significant cost reductions were achieved by DCTA scheme.

  • PDF

Tolerance Analysis and Optimization for a Lens System of a Mobile Phone Camera (휴대폰용 카메라 렌즈 시스템의 공차최적설계)

  • Jung, Sang-Jin;Choi, Dong-Hoon;Choi, Byung-Lyul;Kim, Ju-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.397-406
    • /
    • 2011
  • Since tolerance allocation in a mobile phone camera manufacturing process greatly affects production cost and reliability of optical performance, a systematic design methodology for allocating optimal tolerances is required. In this study, we proposed the tolerance optimization procedure for determining tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices. We employed Latin hypercube sampling for evaluating the reliabilities of optical performance and a function-based sequential approximate optimization technique that can reduce computational burden and well handle numerical noise in the tolerance optimization process. Using the suggested tolerance optimization approach, the optimal production cost was decreased by 30.3 % compared to the initial cost while satisfying the two constraints on the reliabilities of optical performance.

A Study on Tolerance Design of Mechanisms using the Taguchi Method (다구찌 기법을 이용한 기구의 공차설게에 관한 연구)

  • 박경호;한형석;박태원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.813-818
    • /
    • 1996
  • This paper presents a method for tolerance design using the Taguchi Method(TM) and general purpose mechanism analysis program. Also the tolerance design method is with respect to performance improvement of a mechanism. To use the orthogonal array, mathematical model of a mechanism is established and experiments are carried out by the general purpose mechanism analysis program. The contact model is used to consider a clearance effect. This method is applied to the tolerance design of the VTR Deck mechanism. This method can be used in tolerance design of general mechanisms.

  • PDF

Tolerance Design for Parts of a Sliding-Type Mobile Phone to Improve Variational Quality of Its Side Gap (슬라이드형 휴대전화기 측면 갭의 품질개선을 위한 부품 공차설계)

  • Lee, Rae Woo;Chung, Haseung;Jee, Haeseong;Yim, Hyunjune
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.398-408
    • /
    • 2012
  • This paper investigates the tolerance stack-up in a commercial sliding-type mobile phone model developed by a Korean electronics company, with focus on the dimensional quality of the gap between the sliding top and the main body. The tolerance analysis in this study is done using a commercial software package, which runs Monte Carlo simulations to produce the statistical distributions of the gap size at desired locations. Such an analysis revealed that the original design did not yield the desired dimensional quality of the gap. Through a series of systematic analyses and syntheses, an improved design is proposed for the nominal dimensions and tolerances of selected features of the parts. The proposed design was validated, through tolerance analysis simulation, to meet the desired requirement of the gap quality.

A Study on Tolerance Design of Mechanisms Using the Taguchi Method (다구찌 기법을 이용한 기구의 공차설계에 관한 연구)

  • Park, Kyoung-Ho;Han, Hyung-Suk;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.66-77
    • /
    • 1996
  • This paper presents a method for tolerance design using the Taguchi Method(TM) and general purpose mechanism analysis program. Also the method is tolerance design with repect to performance improvement of a mechamism. To use the orthogonal array, mathematical model of a mechanism is established and experiments are carried out by the general purpose mechanism analysis program. The contact model is used to consider a clearance effect. This method is applied to the VTR Deck mechanism. This method can be used in tolerance design of general mechanisms.

  • PDF