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Tolerance allotment with Design Centering considering Assembly Yield

Jinkoo Lee*

'L Abstract If

The purpose of this research was developing an integrated way to solve two typical tolerance optimization problems, i.e.
optimal tolerance allotment and design centering. A new problem definition, design centering-tolerance allotment problem
(DCTA), was proposed here for the first time and solved. Genetic algorithm and coarse Monte Carlo simulation were used
to solve the stochastic optimization problem. Optimal costs were compared with the costs from the previous optimization
strategies. Significant cost reductions were achieved by DCTA scheme.
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1. Introduction

Tolerance in mechanical design represents the accept-
able variation from the nominal value. In mechanical
design, tolerances must be assigned in order to assure eco-
nomical manufacturing cost and interchangeability of
parts. In assemblies, the tolerances for individual dimen-
sions have a strong effect on the functions and the inter-
changeability. Therefore tolerancing problems occur in the
range from a clearance problem to the overall performance
of complicated mechanisms. The sum of the individual
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dimensions(stack-up) in assemblies might not be in-spec
even when the individual dimensions are in-spec. There
are several approaches in assignment of tolerances, includ-
ing worst case tolerancing, statistical tolerancing, and tol-
erance optimization. Worst case tolerancing requires that
all dimensions in the tolerance range must satisfy the
assembled product specifications(stack-up conditions).
This guarantees that the assembly should work properly
even in the worst case combination of dimensions. How-
ever, worst case tolerancing typically results in over-con-
servative tolerances, which increase manufacturing cost. In
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statistical tolerancing, the tolerances must be assigned to
the dimensions such that the probability for the assembly
to function properly is above some specified acceptable
amount(yield). In this approach, the individual tolerances
are represented as probability distributions. Therefore sta-
tistical tolerancing allows more reasonable tolerances and
hence lower manufacturing cost. In tolerance optimization
research, two types of problems are typically recognized:
tolerance allotment problems'’ and design centering prob-
lems.® The allotment of tolerances is closely tied to the
overall quality and cost of a product.”® If the tolerances are
too loose, the probability for an assembly to function
acceptably(yield) will be low. On the other hand, if the tol-
erance is too tight, the manufacturing cost will become
high. Thus tolerance allotment becomes an optimization
problem to determine the optimal allotment of the toler-
ances under the constraints of the function requirements
and acceptance probability(specification yield). In the
design centering problem, nominal dimensions are
changed in order to find the maximum yield with fixed tol-
erances. Therefore the design variables are the nominal
dimensions in the design centering problem. Typical
numerical optimization methods require analysis, perturba-
tion, and reanalysis in an organized algorithmic fashion.

2. Tolerance Optimization Problems

2.1 Cost Function

The cost function model for tolerances is the mathemati-
cal representation of the manufacturing costs in terms of the
tolerances. In most cases monotonically decreasing func-
tions are selected as cost functions because of the monoton-
ic behavior of manufacturing costs for tolerances. Two
common models are the reciprocal squared model and the
exponential model. In the reciprocal squared model, the
cost function is represented as

C(t) = t—“— +f (1)

where a4 is a constant for variable manufacturing cost,
and f 1is a constant for fixed manufacturing cost.

In multi-dimensional model, total manufacturing cost can
be obtained by summing the individual costs for each

dimension:
C(t) = é(tj) (2)
or in the standard deviation domain:
Clo)=3(o)) 3

j=1

where ?; are tolerances and O; are standard variables.

2.2 Yield

In many tolerancing problems, individual dimensions are
assumed to have normal distributions. This assumption pro-
vides a method to relate the tolerances to the degree of sat-
isfaction. Therefore the dimension vector x is assigned to
have the multivariate normal distribution. The mean value
U; of a dimension X; is given as nominal dimension in the
design process. However the standard deviation O is
selected according to the degree of precision achieved with
each manufacturing process. As a consequence, the stan-
dard deviations O are a function of the tolerances Z;. In
mass production, the tolerance of a single dimension is con-
sidered as sufficiently large if 99.73% of the dimensions
are in spec. For normally distributed random variables,
there is a 99.73% probability that the variable will take on
a value within + 3¢ of the nominal value. Therefore, in
common cases, O; is setto 7; /6. As a result, the charac-
teristics of the distributions are determined if #; is given.

The domain of dimensions is divided into a safe region
and a failure region by inequalities. Those inequalities are
the design functions(i.e. constraints on the sum dimen-
sions). The intersection of the safe region and the accept-
able tolerance region is referred to as the reliable region.
The reliable region depends on the standard deviation O;

. of each dimension since the tolerance region varies with
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O ;. An important concept called yield is computed as the
probability of x being in reliable region. Let x,, and x; rep-
resent the upper and lower limits of an individual dimen-
sion x, in an assembly. Then the yield is represented as
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Y= .z 0(x)dx (4)

where R, represents the reliable region.

Several approaches have been tried to calculate the yield
in tolerancing problems, including the Taylor series
method, the Monte Carlo methods and the approximation
using a reliability index.

2.3 Optimal Tolerance Allotment Problem

The yield increases as the tolerances become tighter.
However manufacturing costs also increase as the toler-
ances become tighter. The effect of individual tolerance
improvement on the total manufacturing cost increase is
different for each tolerance. Therefore, the allotment of
individual tolerances, which minimizes the cost under the
design functions and minimum acceptable yield constraints,
becomes an optimization problem. This optimal tolerance
allotment problem is defined as:

minimize C(1) 5

subjectto Pr(Ry)>7Y,,.
C(r) represents cost function,
¢ represents tolerance vector,
Y. represents spec yield,

R, represents reliable region,

and Pr(R, ) represents estimated yield.

where

If the integration of the probability density function is
performed by a simulation scheme, the optimal tolerance
allotment problem becomes a stochastic optimization prob-
lem. Lee and Woo"" solved this problem using domain
approximation schemes. Lee and Johnson' solved the
same problem as a stochastic optimization problem using
genetic algorithm and coarse Monte Carlo simulation and
demonstrated that new strategy gives the optimal solution
for the original problem.

2.4 Design Centering Problem

[n real manufacturing situations, the precision of a given
manufacturing process to produce a dimension might be
fixed by the environment. In a cutting process, cutting pre-
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cision is determined depending on the selection of a
machine. In these situations a machinist adjusts the fixture
setting by turning the knob or displacing the jig slightly. In
terms of statistics, the machinist tries to put the center of the
manufacturing distribution on the center of the reliable
region by shifting the mean in order to maximize the yield.
The purpose of design centering can be stated as “choose
the center dimensions x_ of the design variables so that
yield Y be maximized for a given distribution ¢(x)" .
Therefore the optimization problem is defined as:

minimize Y(x, )= j’“hL j:’f‘q(xl,L ,X,)

xll
dx,

O(x;,Lo,x,5x )dx, ©)

where  ¢(x,,L ,x,) is the multivariate normal
probability density function,

g(x,,L ,x,)is a test function which checks
whether a stochastically selected point is in
the reliable region or in the infeasible region
and is defined as

g(x,,L ,x,)=1, if F(x;,L ,x,)>0for
all design functions 0, otherwise
X, X,,means lower and higher limits of
the dimension x,.

Lee'™ suggested new strategy to solve this problem in
stochastic way. Remarkable increases in yields were
observed in solving sample problems.

3. Design Centering-Tolerance aliotment Problem

3.1 Problem Detinition

The optimal tolerance allotment problem is a rigid mod-
eling problem. It minimizes the cost by reducing the toler-
ances while fixing the distribution centers on the nominal
dimensions. The fact that the tolerance can be changed
means that the precision of manufacturing processes can be
changed in order to meet tolerance requirements. In the
design centering problem, the tolerance is fixed under the
assumption that the manufacturing processes and the preci-
sion of the machines are determined already. In a more
realistic manufacturing situation, both the precision of man-
ufacturing processes and the fixture settings could be
changed simultaneously to increase the yield and minimize
the manufacturing cost. As discussed in the previous chap-
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ter, design centering plays a significant role in improving
the yield when the tolerances are fixed. The main idea of
the design centering-tolerance allotment (DCTA) problem
is the solution of the tolerance allotment problem while
changing the design centers, i.e. the solution is sought with
a more flexible attitude. Design variables in DCTA prob-
lems are the center dimensions and the standard deviations.
The problem can be described as

(7N

minimize C(G)

o)>Y

spec

subjectto  Y(x,

where x. is the vector of dimension centers,
o is the vector of standard deviations,
and Y. Yspec is a spec yield.

Penalty function methods are used to change the con-
strained optimization problem as the unconstrained opti-
mization problem. By using the method, problem (7) 1s
converted as

minimize C(o)+ r<Le %, o(xc, o) - YSPec>2 (8)

where{a) = a, if a is positive
0, otherwise

and r 1s penalty coefficient and positive.

The formulation looks similar to that of the tolerance
allotment problem except that the center dimensions are
added as design variables and the dimensionality of the
problem is increased from n to 2n as a consequence.

3.2 Genetic Algorithms

The major steps of a genetic algorithm® are generating a
new population from a current generation according to
established adaptation rules. An original genetic algorithm
1s composed of three steps; Fitness proportionate reproduc-
tion, Cross-over and Mutation.

In DCTA problems, the center dimensions and their
corresponding standard deviations are the design vari-
ables. Therefore the population structure of this prob-
lem is
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where p is the size of the population.

A substring is composed of the combination of a center
dimension string and a standard deviation string. A center
dimension and a standard deviation are each represented by
six bit strings. Therefore a substring is a twelve bit binary
string. When there are eight substrings corresponding to
twelve dimensions, full string length is 96.

The decoding scheme involves two steps. At first the full
string is divided into n substrings. Then the first part of a
substring is mapped onto the center dimension of a variable.
The precision of the center dimension discretization, 7., is

T = meBX

c

- X
63

cmin

(10)

Next the last part of the string is mapped onto the stan-
dard deviation domain of the variable. The precision of the
tolerance discretization, 7, is

30

—_ max

= 11
63 (In

3.3 Monte Carlo Simulation

The sampling method of the original Monte Carlo simu-
fation technique for evaluating probability density functions
is based on the rejection method.'” The rejection method
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Fig. 2 Monte Carlo Simulation for Yield Estimation

generates N sample points x,,..., x,, from the probability
density function ¢ (x). After N sample points have been
selected, the points are checked to see whether they are in
the feasible region (i.c. satisfy design functions) or not.
Then the estimated yield is

(12)

where s; is the number of points satisfying the
design functions,
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Because the standard deviation is a measure of the
expected error of the estimation and the square root of the
variance, the expected error is inversely proportional to the
square root of the sample numbers N. The flowchart of the
Monte Carlo simulation is shown in Figure 2.

As in the tolerance optimization problem, a function eval-
uation using simulation schemes would be a costly process
in stochastic optimization problems. Therefore, if computa-
tion time can be saved by using approximate function eval-
uation schemes, more iterations can be performed in the
given computation time. The outstanding performance of
genetic algorithms in approximate function evaluation
results from the genetic algorithms' nature of sampling,
propagating, and reevaluating abilities along generations
and population evolution. Even though a fitness of an indi-
vidual string could decrease due to randomness of the
crossover and mutation, the fitness of the population still
increases as each generation proceeds. This observation
makes genetic algorithms applicable to problems in which
evalnation of candidate solutions can only be performed
through Monte Carlo methods. This idea suggests that in
some cases the overall efficiency of genetic algorithms may
be improved by reducing the time spent on individual eval-
uations and increasing the number of generations per-
formed.

3.4 DCTA Procedure

The procedure to solve the DCTA problem is presented next.
Step 1 Generate initial population. The initial population
is a set of Np strings.

Strings are random combinations of 0 and 1.
Divide a string into n substrings.

Decode the first part of a substring,

Map decoded value onto center dimension inter-

Step 2
Step 3
Step 4
val to get a candidate center dimension.

Decode the last part of the string.

Map decoded vatue onto tolerance interval.
Repeat Step 3 through Step 6 until n substrings
are decoded.

Step 8 Calculate the cost C for the tolerance vector.

Step 9 Estimate the yield using the Monte Carlo simulation.
Step 10 Evaluate the penalized cost C,.

Step 5
Step 6
Step 7
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C, = C+(penalty coefficient)(Y - Y ifY< Y pec

\pCC)
Cp = C, otherwise.

Step 11 Repeat Step 2 through Step 10 until all N,
strings are evaluated.

Step 12 Calculate average cost and set the maximum
cost and the minimum cost.

Step 13 Rescale the fitnesses.

Step 14 Produce the population of the next generation by
genetic algorithm: reproduction, crossover, and
mutation.

Repeat Step 2 through Step 14 until the generation

reaches the last generation to be evaluated.

3.5 Parameters

For genetic algorithms, the selection of parameters affects
the behavior of the algorithm. DeJong™®' performed a study,
which illustrates how the choices of the parameters affect
the performance of genetic algorithms. For the test run, the
parameters are selected as follows:

Population size =100
Cross-over Probability — =0.7
Mutation Probability =0.005.

3.6 Experiment Schemes

The main purpose of the experiments is to explore how
the robustness of the genetic algorithm can overcome the
randomness of approximate Monte Carlo simulation in
which extremely small number of sampling points are used.
At the outset, it was assumed that the genetic algorithm
would require more generations to reach a certain level of
performance if the function evaluations were noisier, How-
ever the computation time for each iteration can be reduced
by using the approximation strategy. Therefore the total
computation time to reach a solution might be shorter when
a coarse approximation is used. As discussed in section 3.3,
the precision of the Monte Carlo simulation is inversely
proportional to the square root of the sampling numbers. At
the initial stage of the experiments, 100 sampling points
were tried for the integration of an § dimensional multi-
variate probability density function. The precision of the
estimation is (.15 for one standard deviation. The algo-

rithm converged to a good solution even for this noisy eval-
uation. The number of sampling points was gradually
decreased until the algonthm would no longer converge to
the solution. As the next step, various sampling numbers
were tried in order to explore the relations between the
computation efforts, the approximation, and the perfor-
mance.

4. Results

A linear constraint problem is presented by modifying the
Lee and Woo's problem.”’ New constraint set is

F(x)=-x, -x, +5.005

F(x)=x, -x, -x; +x, - 0.0003
F(x)=x; -x; - x; +x, +0.001
F,(x)=x, -x, -x, - 0.0003
F.(x)=x, +x, -4.985

F(x)=-x, X, + %, -x, +0.0071
F(x)=-x, +x, +X; ~x, - 0.005
F(x)=-x, +x, +x, +0.0071.

Design functions represent the clearance condition for
assembly. The reciprocal squared cost function model,
equation (1), was modified and used to define total manu-
facturing cost as

(107)

The coefficients in equation (13) were set as: a, = a, =
1.0 ,a,=a, =1.5,a, =08, =09,a, =08, and a, =
0.6;andb, =2.0,b, =1.8,b3 =1.7,b, =2.0 , b, =3.0 ,
b, =2.0,and b, =b, = 1.9. The specification yield is 95%.

Figure 4 shows the convergence of the algorithm with

a;

(65,)"

C

(13)

respect to computation effort. The algorithm converged
faster when a smaller number of sampling points was used.
The computational complexity of an algorithm can be rep-
resented by various measurements such as: the number of
arithmetic operations, the number of function evaluations,
the number of iterations, or computation time. The time
complexity of the computation in this algorithm is the sum
of the time spent for the Monte Carlo simulation and the
time spent for the genetic algorithm. Simple experiments
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were performed to compare the computation time for the Table 1 The Result of DCTA

Monte Carlo simulation and the genetic algorithm. In per-

forming the algorithm with 100 sampling points and 100 Variables |  String 1 String 2 String 3
generations, the CPU time spent for the Monte Carlo simu- Xcl 0.99929 0.99913 0.99913
lation and the genetic algorithm was 216.2 seconds and Xc2 1.99032 1.99032 1.99032
5.8 seconds each on a Pentium PC. Therefore the computa- Xc3 3.00214 300214 300214
tion time for the genetic algorithm is very small compared xc4 3.99968 3.99905 3.99905
to the time associated with the Monte Carlo simulation. X5 | 099770 | 0.99754 | 0.99770
Because the computation time for the Monte Carlo simula- XC6 0.99396 0.99396 0.99396
tion is exactly proportional to the number of the sampling xc7 2.00905 2.00905 2.00873
points, the computation effort is defined as the generation Xc8 2.99633 2.99681 2.99633
number multiplied by the sampling points number and can 1 0.00591 0.00486 0.00477
be used as a measurement of the time complexity. In solv- 2 0.00267 0.00210 0.00229
ing this problem, averages of 171 were required for 10 t3 0.00571 0.00229 0.00229
sampling points. Therefore the computation complexity is “ 0.00533 | 0.00419 | 0.00533
1,710 in this case. t5 0.01905 0.01905 0.01905
The results of a test run are presented in Table 1. For the t6 0.00247 | 0.00285 0.00285
test run, the number of sampling points was 30 and the 7 0.00324 | 0.00324 | 0.00324
generation number was 300. The original problem was 18 0.00428 0.00428 000200
solved by Lee and Woo'"' using tolerance allotment and the Cost 487.41 528.89 55.01
minimum cost was about 1600. Lee and Johnson' solved (509.46)* | (530.84)*
same problem as a stochastic optimization problem using Yield 92.23% 94.47% 94.99%

genetic algonthm and coarse Monte Carlo simulation and x¢; dimension centers, t; tolerances, string; candidate solutions

showed the minimum cost is 1500. However minimum *  penalized cost
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cost by DCTA scheme is 550 while guaranteeing essen-
tially the same yield. It can be recognized that the cost has
been remarkably reduced (about 65%) by DCTA. This
result shows that DCTA is shows great promise for prob-
lem modeling in realistic manufacturing situations.

5. Conclusion

In real manufacturing situations, both the precision of
manufacturing processes and the fixture settings could be
changed simultaneously to increase the yield and minimize
the manufacturing cost. The main idea of the design center-
ing-tolerance allotment (DCTA) problem is the solution of
the tolerance allotment problem while changing the design
centers, i.e. the solution is sought with a more flexible atti-
tude. New problem type, design centering-tolerance allot-
ment problem, was posed and solved with a remarkable
cost reduction (about 65%) compared to conventional
problem formulations. The DCTA problem formulation
might be the most flexible way to solve tolerancing prob-
lems under the realistic manufacturing situation. This
research suggests a new approach to solve other stochastic
optimization problems. The combination of robust opti-
mization methods and approximated simulation schemes
would give promising results for many stochastic optimiza-
tion problems, which are inappropriate for mathematical
programming,
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