• Title/Summary/Keyword: Titanium alloy

Search Result 529, Processing Time 0.03 seconds

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

STRESS OF DENTAL IMPLANT ABUTMENT SCREW BY THE TIGHTENING TORQUE (조임 회전력에 따른 치과 임플랜트 지대나사의 응력에 관한 연구)

  • Lee, Won-Joo;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.5
    • /
    • pp.721-737
    • /
    • 1998
  • Abutment screw loosening of implant restorations is a common problem in the treatment of dental implant. The purpose of this study was to calculate stress and preload from the elongation measurements and to determine maximum tightening torque without plastic deformation of the screw. The length of each gold alloy UCLA screw was measured after tightening to the manufacturer's recommended torque of 32 N-cm. Similarity, titanium UCLA screws were measured after tightening to the manufacturer's recommended torque of 20 N-cm. Loosening torque was also measured after tightening to 32 N-cm torque for gold alloy abutment screws and 20 N-cm for titanium abutment screws. The results were as follows ; 1. There was a regressive relationship between screw elongation and tightening torque (gold alloy : $r^2=0.987$, titanium : $r^2=0.978$), and the mean preload calculated from elongation measurements was $501.11{\pm}26.85\;N$ (gold alloy) and $399.43{\pm}7.61\;N$ (titanium). 2. Stress calculated for the gold alloy and titanium screws at maximum recommended tightening torque was less than 60% of their respective yield strengths and with-in the elastic range. Maximum tightening torque without plastic deformation was 61 N-cm (gold alloy) and 39 N-cm (titanium). 3. For titanium screws, there was a significant difference between loosening after trial 1 and loosening after trials 2 to 5 (p<0.05). No statistically significant difference was seen in mean loosening torques between the first and subsequent trials for gold alloy screws.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

MECHANICAL PROPERTIES OF LASER-WELDED CAST TITANIUM AND TITANIUM ALLOY (원심 주조된 타이타늄과 타이타늄 합금의 레이저 용접 특성)

  • Yun, Mi-Kyung;Kim, Hyun-Seung;Yang, Hong-So;Vang, Mong-Sook;Park, Sang-Won;Park, Ha-Ok;Lee, Kwang-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.642-653
    • /
    • 2006
  • Purpose : The purpose of this study was to investigate the effect of the output energy(voltage) of laser welding on the strength and properties of joint of cast titanium(CP Gr II) and titanium alloy(Ti-6Al-4V). Material and method : Cast titanium and its alloy rods(ISO6871) were prepared and perpendicularly cut at the center of the rod. After the cut halves were fixed in a jig, and the joints welded with a laser-welding machine at several levels of output voltage of $200V{\sim}280V$. Uncut specimens served as the non-welded control specimens The pulse duration and pulse spot size employed in this study were 10ms and 1.0mm respectively. Tensile testing was conducted at a crosshead speed of 0.5mm/min. The ultimate tensile strength(MPa) was recorded, and the data (n=6) were statistically analyzed by one-way analysis of variance(ANOVA) and Scheffe's test at ${\alpha}$=0.05. The fracture surface of specimens investigated by scanning electron microscope (SEM). Vickers microhardness was measured under 500g load of 15seconds with the optimal condition of output voltage 280V. Results : The results of this study were obtained as follows, 1. When the pulse duration and spot size were fixed at 10ms and 1.0mm respectively, increasing the output energy(voltage) increased UTS values and penetration depth of laser welded to titanium and titanium alloy. 2. For the commercial titanium grade II, ultimate tensile strength(665.3MPa) of the specimens laser-welded at voltage of 280V were not statistically(p>0.05) different from the non-welded control specimens (680.2MPa). 3. For the titanium alloy(Ti-6Al-4V), ultimate tensile strength(988.3MPa) of the specimens laser-welded at voltage of 280V were statistically(p<0.05) different from the non-welded control specimens (665.0MPa). 4. The commercial titanium grade II and titanium alloy(Ti-6Al-4V) were Vickers microhardness values were increased in the fusion zone and there were no significant differences in base metal, heat-affected zone.

Titanium alloy bolt hot forging process analysis through plastic working analysis (소성 가공 해석을 통한 티타늄 합금 볼트 열간 단조 공정 분석)

  • Choi, Doo-Sun;Kim, Tae-Min;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Kim, Do-Un
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Titanium alloy has been in the spotlight as a core material in high-tech industries that require high strength and light weight because it has excellent strength and corrosion resistance and strength is higher than that of steel. Therefore, in various industries, existing steel products are intended to be replaced with titanium alloys. Titanium alloys can cause cutting tool breakage during cutting, and heat generated during cutting does not dissipate, accumulates in tools and workpieces, resulting in large wear and tear on thin workpieces. In addition, since titanium alloy is a metal with high chemical activity, the wear of the tool becomes more severe when the cutting speed is high, so machining of titanium bolt through cutting is very disadvantageous in terms of productivity. Therefore, the production of bolts using titanium alloys is being produced through a forging process to improve productivity and product quality. In this paper, hot forging molding analysis was performed on bolts used for fastening automobile parts using Ti-6Al-4V alloy, which is the most commonly used titanium alloy.

ATTACHMENT AND PROLIFERATION OF HUMAN GINGIVAL FIBROBLASTS ON THE IMPLANT ABUTMENT MATERIALS (임플랜트 지대주 재료에 대한 치은 섬유아세포의 반응)

  • Lim Hyun-Pil;Kim Sun-Hun;Park Sang-Won;Yang Hong-So;Vang Mong-Sook;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.112-123
    • /
    • 2006
  • Purpose: The biocompatibility and bio-adhesive property of a dental implant abutment are important for proper soft tissue healing and maintenance of osseointegration of implant. However, studies of soft tissue healing and mucosal attachment of various materials of implant abutment other than titanium are still needed. In this study, cell attachment, proliferation, cytotoxicity of human gingival fibroblast for ceramic, gold alloy, Ni-Cr alloy and, commercially available pure titanium as a control were evaluated, using MTS and scanning electron microscopy. Materials and Methods: Specimen was designed to disc, 4mm diameter and 1mm thickness, made of ceramic, gold alloy, Ni-Cr alloy and commercially available pure titanium. Primary culture of human gingival fibroblasts were grown in Dulbecco's modified Eagle's medium with 10% fetal bovine serum and 1% antibiotics. Cells were inoculated in the multiwell plates placed the specimen disc. Cell Titer 96 AQucous One Solution Cell Proliferation Assay were done after 1hour 3hours, 24hours, 3days, 5days of incubation. The discs were processed for scanning electron micrography to evaluate cell attachment and morphologic change. Results: The results were obtained as fellows. 1. The ceramic showed high cell attachment and proliferation and low cytotoxicity, which is as much bioadhesive and biocompatible as titanium. 2. The gold alloy represented limited proliferation of human gingival fibroblast and the highest cytotoxicity among tested materials (p<0.05). 3. The Ni-Cr alloy limited the proliferaion of the human gingival fibroblast compared to titanium(p<0.05) but cytotoxicity on the bottom of well was not so considerable, compared to titanium. 4. On the scanning electron micrographs , the ceramic showed good attachment and proliferation of human gingival fibroblast, which was similar to titanium. But gold alloy and Ni-Cr alloy showed the shrinkage of gingival fibroblast both after 24 hours and 3 days. On 5th day, small amount of the human gingival fibroblast proliferation was observed on the Ni-Cr alloy, while the shrinkage of gingival fibroblast was still observed on the gold alloy. Conclusions: These results suggest that the ceramic abutment is as biocompatible as titanium to make proper mucosal seal. The gold alloy has a high cytotoxicity to limit proliferation of gingival fibroblast, which suggest limited use on the anterior tooth where soft tissue healing is recommeded.

Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

A study on the Bond Strength of Non-Precious Alloys Used for the Porcelain Fused to Metal Crown (도재 전장 금관용 비귀금속 합금의 결합강도에 관한 연구)

  • Kim, Cheol-Man;Lee, Jong-Hyuk;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.3
    • /
    • pp.203-210
    • /
    • 2006
  • Although porcelain fused to metal crowns made from non-precious metal have good mechanical properties, they also have disadvantages such as the poor biological acceptability and the low corrosional resistance. Titanium is used as the alternative metal for porcelain fused to metal crowns, in spite of difficulties in casting. For that reason non-precious alloy including titanium which is easy to cast is currently used. This study evaluated the bond strength between non-precious alloy including titanium and Ni-Cr alloy. $Tilite^{(R)}V$ as non-precious alloy including titanium, $Rexilium^{(R)}V$ as Ni-Cr alloy and $Omega900^{(R)}$ and $Vintage(Regular)^{(R)}$ as porcelain powders were used. The results were as follows. 1. In comparison with the kind of alloy, the bond strength of $Tilite^{(R)}V$ was lower than that of $Rexilium^{(R)}V$. There was no significant difference between two groups. 2. In comparison with the kind of porcelain powder, the bond strength of $Omega900^{(R)}$ was higher than that of $Vintage(Regular)^{(R)}$ in $Tilite^{(R)}V$. There was significant difference between two groups(p < 0.05).

Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1))

  • Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions (두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸)

  • 이권용;김석영;김신윤
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF