• Title/Summary/Keyword: Time-Constant

Search Result 5,304, Processing Time 0.031 seconds

Rotor Time Constant Estimation for Induction Motor Direct Vector Control (유도전동기 직접벡터제어를 위한 회전자 시정수 추정)

  • Bae Sang-Jun;Choi Jong-Woo;Kim Heung-Geun;Lee Hong-Hee;Chun Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.413-419
    • /
    • 2004
  • In the induction motor direct vector control system using the Gopinath model flux observer, the deterioration of the dynamic response due to the detuned rotor time constant is investigated. To solve this problem, the on line estimation algorithm of the rotor time constant using model reference adaptive control is proposed. The effect of the motor parameter variation on the rotor time constant estimation is analyzed through experiment. The estimation error due to the parameter variation converges within 5%. Thus applying the proposed algorithm to the Gopinath model flux observer, the robust direct vector control system of the induction motor to the parameter variation can be implemented.

Comparison of TDC Circuit Design Method to Constant Delay Time

  • Choi, Jin-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.461-465
    • /
    • 2010
  • This paper describes the design method of Time-to-Digital Converter(TDC) to obtain the constant delay time and good reliability. The reliability property is described with delay elements. In TDC the time signal is converted to digital value which is based on delay elements for the time interpolation. To obtain the constant delay time, the first and the last delay elements have different structure compared to the middle delay elements. In the first and the last delay elements, the driving ability could be controlled for the different delay time. The delay element can be designed by analog and digital devices. The delay time of the element using analog devices is not sensitive to process parameters than that of the element using digital devices. And the TDC circuit by the elements using analog devices shows better reliability than that by the elements using digital devices also.

Small-size PLL with time constant comparator (시정수 비교기를 이용한 작은 크기의 위상고정루프)

  • Ko, Gi-Yeong;Choi, Young-Shig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2009-2014
    • /
    • 2017
  • A novel structure of phase locked loop (PLL) with a time constant comparator and a current compensator has been proposed. The proposed PLL uses small capacitors which are impossible for stable operation in a conventional PLL. It is small enough to be integrated into a single chip. The time constant comparator detects the loop filter output voltage variations using signals which are passed through small and large RC time constants. The signal from the large RC time constant node is the average of the loop filter output voltage. The output voltage of another node is approximately equal to the present loop filter voltage. The output of the time constant comparator controls a current compensator and charge/discharge small size loop filter capacitors. It makes the proposed PLL operate stably. It has been simulated and proved by HSPICE in a CMOS $0.18{\mu}m$ 1.8V process.

A Robust Indirect Vector Control of Induction Motor with On-Line Tuning of Rotor Time Constant in Wide Speed Range (전운전영역에서 회전자 시정수 온라인 동조에 의한 강인한 벡터제어)

  • 조순봉
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.201-208
    • /
    • 1999
  • This paper presents the degradation of the system performance according to the vmiation of the rotor time constant. The algorithm for the on-line estimation of rotor time constant is proposed. which is applied to the consistent relationship between the tangent torque angle of the synchronous reference frame and that of stationary reference f frame. For the purpose of the validity of proposed algorithm. the computer simulation and the experiments have been p performed.

  • PDF

Vector Control of Induction Motors with Compensation Algorithm of Rotor Time Constant (회전자 시정수 보상 알고리즘을 갖는 유도전동기의 벡터제어)

  • Kim, Jong-Kuk;Lee, Deuk-Kee;Jung, Jong-Jin;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1964-1967
    • /
    • 1997
  • The rotor time constant variation has a large effect on the vector controlled system of induction motor. In this paper, the algorithm which compensate the misalignment of the rotor flux vector as an error caused by incorrect rotor time constant are presented. The simulations show that the proposed algorithm suitably compensates the rotor time constant.

  • PDF

Output LC Filter Design of Three Phase Voltage Source Inverter Considering the Performance of Controller (제어기 응답을 고려한 삼상 전압형 인버터의 출력 LC필터 설계)

  • 최재호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.748-751
    • /
    • 2000
  • in this paper the design procedure of three phase voltage source inverter output filter is described. The 'd' axis transfer function of the filter output voltage to the load current is described with the capacitor value and the system time constant including the controller. This means that the relation between the filter capacitor value and the system time constant is given as the closed form. By using the above closed form the capacitor value can be calculated with the system time constant is given as the closed,. form the capacitor value can be calculated with the system time constant which can be implemented practically not using the try and error method. And as the effect of the load is connected.

  • PDF

NUMERICAL STUDY OF TRANSIENT CONJUGATE HEAT TRANSFER IN A MICRO-CHANNEL SUBSTRATE (마이크로채널 기판에서 비정상 복합 열전달의 수치적 연구)

  • Lee, H.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.87-92
    • /
    • 2012
  • A numerical study of transient conjugate heat transfer on micro heater in a micro-channel substrate under pulsed heating was conducted. It was found that the time constant is not affected by the pulse heating magnitude at same operating condition. Furthermore, the time constant increases with low substrate thermal diffusivity, low Reynolds number, and large channel diameter. Since the time constant is a dominant parameter to characterize transient heat transfer, it should be considered for transient convective heat transfer coefficient.

Sensorless Vector Control System with Compensated Time Constant of Induction Motor Using a MRAS (MRAS를 이용한 유도 전동기의 시정수 보상을 갖는 속도 센서리스 벡터제어)

  • 임태윤;김동희;황돈하;김민회
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.540-543
    • /
    • 1999
  • This paper describes a speed sensorless algorithm for vector control system with compensated stator resistance and rotor time constant of induction motor using a model reference adaptive system(MRAS). The system are composed of two MRAC, one is a rotor speed estimation and a stator resistor identification by back-EMF observer, other is used to identify rotor time constant by magnetizing current observer, so that the estimation can be cover a very low speed range with a robust control. The suggest control strategy and estimation method have been validated by simulation study. In the simulation using Matlab/Simulik, the proposed speed sensorless vector control system are shown to operate very well in spite of variable rotor time constant and load fluctuation.

  • PDF

The Identification of Rotor Time Constant Using Neural Network (신경회로망을 이용한 유도전동기 회전자 시정수 추정)

  • Lee, Jung-Min;Han, Woo-Yong;Seul, Nam-O;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2543-2545
    • /
    • 1999
  • This Paper Presents the identification of rotor time constant using Neural Network. The difference between the rotor time constant of a controller and the actual one causes the degradation of motor performance in indirect vector control scheme. The actual value is varied by heating of motor, so on-line tuning method is necessary. Therefore, the identification using Neural Network is used in this paper. The simulation using Matlab/Simulink shows that the proposed method suitably identifies the rotor time constant in the steady state

  • PDF

Compensation of the Rotor Time Constant of Induction Motor using Stator Current Error (고정자 전류오차를 이용한 유도전동기 회전자 시정수보상)

  • 이무영;김승민;윤경섭;구본호;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.585-591
    • /
    • 1998
  • It is proposed a new compensation method in the rotor time constant of indirect vector controlled induction motor. The proposed scheme is an on-line method using the stator current error that is the difference between current command and estimated current calculated from terminal voltages and currents. As the current error becomes to zero, the rotor time constant in the vector controller approaches the real value. The proposed method shows good performances in the transient region as well as in the steady state region regardless of load torque variation, and it is verified by the computer simulation using SIMULINK in Matlab.

  • PDF