• Title/Summary/Keyword: TiO-N

Search Result 1,340, Processing Time 0.035 seconds

Low Temperature Preparation and Photocatalytic Activity of TiO{2-x}Nx (TiO{2-x}Nx의 저온제조 및 광화학적 특성)

  • Jung, Dong-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.120-124
    • /
    • 2010
  • $TiO_2$ and N-substituted $TiO_{2-x}N_x$ were synthesized by using precipitation method. $TiO_{2-x}N_x$ compound absorbed whole UV light as well as long wavelength of visible light (400 - 700 nm) because of the change of band gap from 3.2 eV to 1.77 eV. Results obtained revealed that $TiO_{2-x}N_x$ showed higher activity than pure $TiO_2$ or P-25 for visible-photocatalytic degradation of 1,4-dichlorobenzene.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

Effect of Si3N4 Buffer Layer on Transmittance of TiO2/Si3N4/Ag/Si3N4/TiO2 Multi Layered Structure (TiO2/Si3N4/Ag/Si3N4/TiO2 다층구조에서 Si3N4 버퍼층이 투과율에 미치는 영향)

  • Lee, Seo-Hee;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • The $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ multi layered structure was designed for the possible application of transparent electrodes in PDP (Plasma Display Panel). Multi layered film was deposited on a glass substrate at room temperature by DC/RF magnetron sputtering system and EMP (Essential Macleod Program) was adopted to optimize the optical characteristics of film. During the deposition process, the Ag layer in $TiO_2/Ag/TiO_2$ became heavily oxidized and the filter characteristic was degraded easily. In thus study, Si3N4 layer was used as a diffusion buffer layer between $TiO_2$ and Ag. in order to prevent the oxidation of Ag layer in $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ structure. It was confirmed that $Si_3N_4$ layer is one of candidate materials acting as diffusin barrier between $TiO_2/Ag/TiO_2$.

Manufacturing and Characterization of N-doped TiO2 Photocatalytic Thin Film (N 도핑된 TiO2 광촉매 박막의 제조 및 특성분석)

  • Park, Sang-Won;Nam, Soo-Kyung;Heo, Jae-Eun
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.683-688
    • /
    • 2007
  • In this study, N doped $TiO_2$ (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, $O_2\;and\;N_2$) were used and Ti target was impressed by 1.2 kW -5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of $TiO_2$ and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of $TiO_2$ thin film on visible radiation was shown little efficiency but TiO-N was about 18%.

The Complexing Effect of $BaTiO_3\;for\;Bi_4Ti_3O_{12}$ on Layered Perovskite $Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ Thin Films ($Bi_4Ti_3O_{12}{\cdot}nBaTiO_3(n=1&2)$ 박막에서 $Bi_4Ti_3O_{12}$ 에 대한 $BaTiO_3$의 복합효과)

  • 신정묵;고태경
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1130-1140
    • /
    • 1998
  • Thin films of $Bi_4Ti_3O_{12}\;nBaTiO_3(n=1&2)$ were prepared using sols erived Ba-Bi-Ti complex alkoxides. The sols were spin-cast onto $Pt/Ti/SiO_2/Si$ substrates and followed by pyrolysis for 1 hr at $620^{\circ}C,\;700^{\circ}C\;and\;750^{\circ}C$ In the thin films a pyrochlore phase seemed to be formed at a lower temperature and then tran-formed to the layered perovskite phase as the heating temperature increased. In the thin films pyrolyzed at formed to the layered perovskte phase as the heating temperature increased. In the films pyrolyzed at $750^{\circ}C$ the amount of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ reached to 94% while $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ was 77% in composition. This result shows that the formation of the layered pervoskite phase becomes difficult as the amount of complexing $BaTiO_3$ increases. The microstructures and the electrical properties of the thin films were gen-erally improved with the incease of the heating temperature. However the presence of the pyrochlore phase could not be removed effectively. Our study showed that the electrical properties of $Bi_4Ti_3O_{12}{\cdot}BaTiO_3$ were pronouncedly improved with complexing with BaTiO3 when compared to those of $Bi_4Ti_3O_{12}$ while the presence of the pyrochlore phase was detrimental to the those of $Bi_4Ti_3O_{12}{\cdot}2BaTiO_3$.

  • PDF

A study on the improvement of TiN diffusion barrier properties using Cu(Mg) alloy (Cu(Mg) alloy 금속배선에 의한 TiN 확산방지막의 특성개선)

  • 박상기;조범석;조흥렬;양희정;이원희;이재갑
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.234-240
    • /
    • 2001
  • The diffusion barrier properties of TiN by using Cu(Mg) alloy film have been investigated. Cu(Mg) alloy film was deposited on air-exposed TiN film. Upon annealing, interfacial MgO of 100 $\AA$ has been formed due to the reaction of Mg with oxygen existed on the surface of TiN. Combined MgO/TiN structure prevented the interdiffusion of Cu and Si up to $800^{\circ}C$. To improve the adhesion of Cu(Mg) alloy film to the TiN, TiN layer was treated by $O_2$ plasma, followed by vacuum annealing at $300^{\circ}C$. It was found that increased oxygen on the surface of TiN film by plasma treatment enhanced segregation of Mg toward the interface, resulting in the formation of dense MgO layer. Improved adhesion characteristics have been formed through this treatment. However, increased power of $O_2$ plasma led to the formation of TiO$_2$ and decreased the Mg content to be segregated to the interface, resulting in the decrease in adhesion property. In addition, the deposition of 50 ${\AA}$ Si on the TiN enhanced the adhesion of Cu(Mg) alloy to TiN without deteriorating the TiN diffusion barrier characteristics.

  • PDF

Studies on Structure and Optical Characteristics of TiO-N Thin Film Manufactured by DC Reactive Magnetron Sputtering Method (DC 마그네트론 반응성 스퍼터링법에 의해서 제작된 TiO-N 박막의 구조 및 광학적특성에 관한 연구)

  • Park Jang Sick;Park Sang Won;Kim Tae Woo;Kim Sung Kuk;Ahn Won Sool
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.307-312
    • /
    • 2004
  • Extensive efforts have been made in an attempt to utilize photocatalytic properties of $TiO_2$ in visible range. $TiO_2$ and TiO-N thin films were made by the DC reactive magnetron sputtering method at $300^{\circ}C$. Various gases (Ar, $O_2$ and $N_2$) were used and Ti target was impressed by 0.6 kW-5.8 kW power range. The hysteresis phenomenon of the $TiO_2$ thin film as a function of the discharge voltage characteristic was observed to be higher as applied power increases. That of TiO-N thin film was occurred at the 5.8 kW power. The cross section and surface roughness of thin films were observed by FE-SEM and AFM. Average surface roughness of TiO-N thin film was observed as $15.9\AA$ and that of $TiO_2$ as $13.2\AA$. The crystal phases of both $TiO_2$ and TiO-N thin films were found to be anatase structure. The atomic $\beta$-N (396 eV peak in N 1s XPS) was shown in the rutile crystal of TiO-N and was considered acting as the origin of wavelength shift to the visible light.

The Formation of ConTiOn+2 Compounds in CoOx/TiO2 Catalysts and Their Activity for Low-Temperature CO Oxidation (CoOx/TiO2 촉매상에 ConTiOn+2 화합물의 생성과 저온 CO 산화반응에 대한 촉매활성)

  • Kim, Moon-Hyeon;Ham, Sung-Won
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.933-941
    • /
    • 2008
  • The formation of $Co_nTiO_{n+2}$ compounds, i.e., $CoTiO_3$ and $CO_2TiO_4$, in a 5wt% $CoO_x/TiO_2$ catalyst after calcination at different temperatures has been characterized via scanning electron microscopy (SEM), Raman and X-ray photoelectron spectroscopy (XPS) measurements to verify our earlier model associated with $CO_3O_4$ nanoparticles present in the catalyst, and laboratory-synthesized $Co_nTiO_{n+2}$ chemicals have been employed to directly measure their activity profiles for CO oxidation at $100^{\circ}C$. SEM measurements with the synthetic $CoTiO_3$ and $CO_2TiO_4$ gave the respective tetragonal and rhombohedral morphology structures, in good agreement with the earlier XRD results. Weak Raman peaks at 239, 267 and 336 $cm^{-1}$ appeared on 5wt% $CoO_x/TiO_2$ after calcination at $570^{\circ}C$ but not on the catalyst calcined at $450^{\circ}C$, and these peaks were observed for the $Co_nTiO_{n+2}$ compounds, particularly $CoTiO_3$. All samples of the two cobalt titanate possessed O ls XPS spectra comprised of strong peaks at $530.0{\pm}0.1$ eV with a shoulder at a 532.2-eV binding energy. The O ls structure at binding energies near 530.0 eV was shown for a sample of 5 wt% $CoO_x/TiO_2$, irrespective to calcination temperature. The noticeable difference between the catalyst calcined at 450 and $570^{\circ}C$ is the 532.2 eV shoulder which was indicative of the formation of the $Co_nTiO_{n+2}$ compounds in the catalyst. No long-life activity maintenance of the synthetic $Co_nTiO_{n+2}$ compounds for CO oxidation at $100^{\circ}C$ was a good vehicle to strongly sup port the reason why the supported $CoO_x$ catalyst after calcination at $570^{\circ}C$ had been practically inactive for the oxidation reaction in our previous study; consequently, the earlier proposed model for the $CO_3O_4$ nanoparticles existing with the catalyst following calcination at different temperatures is very consistent with the characterization results and activity measurements with the cobalt titanates.

Effects of the thin SiO$_{2}$ film at the Ti-Si interface on the formation of TiN/TiS$i_2$ bilayer (Ti-Si 계면의 얇은 산화막이 TiN/TiS$i_2$ 이중구조막 형성에 미치는 영향)

  • 이철진;성만영;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.242-248
    • /
    • 1996
  • The properties of TiN/TiSi$_{2}$ bilayer formed by a rapid thermal annealing is investigated when thin SiO$_{2}$ film exists at the Ti-Si interface. The competitive reaction for the TiN/TiSi_2 bilayer occurs above 600 .deg. C. The thickness of the TiSi$_{2}$ layer decreases with increasing SiO$_{2}$ film thickness and also decreases with increasing anneal temperture When the competitive reaction for the TiN/TiSi$_{2}$ bilayer is occured by rapid thermal annealing, the composition of TiN layer represents TiN$_{x}$O$_{y}$ due to the SiO$_{2}$ layer at the Ti-Si interface but the structures of the TiN and TiSi$_{2}$ layers were not changed.d.d.

  • PDF

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF