Browse > Article
http://dx.doi.org/10.5322/JES.2008.17.8.933

The Formation of ConTiOn+2 Compounds in CoOx/TiO2 Catalysts and Their Activity for Low-Temperature CO Oxidation  

Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University)
Ham, Sung-Won (Department of Display and Chemical Engineering, Kyungil University)
Publication Information
Journal of Environmental Science International / v.17, no.8, 2008 , pp. 933-941 More about this Journal
Abstract
The formation of $Co_nTiO_{n+2}$ compounds, i.e., $CoTiO_3$ and $CO_2TiO_4$, in a 5wt% $CoO_x/TiO_2$ catalyst after calcination at different temperatures has been characterized via scanning electron microscopy (SEM), Raman and X-ray photoelectron spectroscopy (XPS) measurements to verify our earlier model associated with $CO_3O_4$ nanoparticles present in the catalyst, and laboratory-synthesized $Co_nTiO_{n+2}$ chemicals have been employed to directly measure their activity profiles for CO oxidation at $100^{\circ}C$. SEM measurements with the synthetic $CoTiO_3$ and $CO_2TiO_4$ gave the respective tetragonal and rhombohedral morphology structures, in good agreement with the earlier XRD results. Weak Raman peaks at 239, 267 and 336 $cm^{-1}$ appeared on 5wt% $CoO_x/TiO_2$ after calcination at $570^{\circ}C$ but not on the catalyst calcined at $450^{\circ}C$, and these peaks were observed for the $Co_nTiO_{n+2}$ compounds, particularly $CoTiO_3$. All samples of the two cobalt titanate possessed O ls XPS spectra comprised of strong peaks at $530.0{\pm}0.1$ eV with a shoulder at a 532.2-eV binding energy. The O ls structure at binding energies near 530.0 eV was shown for a sample of 5 wt% $CoO_x/TiO_2$, irrespective to calcination temperature. The noticeable difference between the catalyst calcined at 450 and $570^{\circ}C$ is the 532.2 eV shoulder which was indicative of the formation of the $Co_nTiO_{n+2}$ compounds in the catalyst. No long-life activity maintenance of the synthetic $Co_nTiO_{n+2}$ compounds for CO oxidation at $100^{\circ}C$ was a good vehicle to strongly sup port the reason why the supported $CoO_x$ catalyst after calcination at $570^{\circ}C$ had been practically inactive for the oxidation reaction in our previous study; consequently, the earlier proposed model for the $CO_3O_4$ nanoparticles existing with the catalyst following calcination at different temperatures is very consistent with the characterization results and activity measurements with the cobalt titanates.
Keywords
CO oxidation; Cobalt titanates; Raman; X-ray photoelectron spectroscopy; Titania-supported cobalt oxides; Nanoparticles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yu Yao Y. F., 1974, The oxidation of hydrocarbons and CO over metal oxides: III. $Co_3O_4$, J. Catal., 33, 108-122   DOI   ScienceOn
2 Grillo F., Natile M. M., Glisenti A., 2004, Low temperature oxidation of carbon monoxide: The influence of water and oxygen on the reactivity of a $Co_3O_4$ powder surface, Appl. Catal. B, 48, 267-274   DOI   ScienceOn
3 Thormahlen P., Skoglundh M., Fridell E., Andersson B., 1999, Low-temperature CO oxidation over platinum and cobalt oxide catalysts, J. Catal., 188, 300-310   DOI   ScienceOn
4 Cunningham D. A. H., Kobayashi T., Kamijo N., Haruta M., 1994, Influence of dry operating conditions: Observation of oscillations and low temperature CO oxidation over $Co_3O_4$ and $Au/Co_3O_4$ catalysts, Catal. Lett., 25, 257-264   DOI
5 Yang W. H., Kim M. H., Ham S. W., 2007, Effect of calcination temperature on the low-temperature oxidation of CO over $CoO_x/TiO_2$ catalysts, Catal. Today, 123, 94-103   DOI   ScienceOn
6 Ciambelli P., Lisi L., Russo G., Volta J. C., 1995, Physico-chemical study of selective catalytic reduction vanadia-titania catalysts prepared by the equilibrium adsorption method, Appl. Catal. B, 7, 1-18   DOI   ScienceOn
7 Lin Y., Zhang X., 2008, Preparation of highly dispersed $CeO_2/TiO_2$ core-shell nanoparticles, Mat. Lett., 62, 3764-3766   DOI   ScienceOn
8 Brik Y., Kacimi M., Ziyad M., Bozon-Verduraz F., 2001, Titania-supported cobalt and cobalt-phosphorus catalysts: Characterization and performances in ethane oxidative dehydrogenation, J. Catal., 202, 118-128   DOI   ScienceOn
9 Oukaci R., Singleton A. H., Goodwin J. G. Jr., 1999, Comparison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors, Appl. Catal. A, 186, 129-144   DOI   ScienceOn
10 Minemura Y., Kuriyama M., Ito S. I., Tomishige K., Kunimori K., 2006, Additive effect of alkali metal ions on preferential CO oxidation over $Pt/Al_2O_3$, Catal. Commun., 7, 623-626   DOI   ScienceOn
11 Manasilp A., Gulari E., 2002, Selective CO oxidation over Pt/alumina catalysts for fuel cell applications, Appl. Catal. B, 37, 17-25   DOI   ScienceOn
12 Avgouropoulos G., Ioannides T., Papadopoulou Ch., Batista J., Hocevar S., Matralis H. K., 2002, A comparative study of $Pt/{\gamma}-Al_2O_3, Au/{\alpha}-Fe_2O_3$ and CuO-CeO_2$ catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catal. Today, 75, 157-167   DOI   ScienceOn
13 Haruta M., Yamada N., Kobayashi T., Iijima S., 1989, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309   DOI   ScienceOn
14 Grisel R. J. H., Nieuwenhuys B. E., 2001, Selective oxidation of CO over supported Au catalysts, J. Catal., 199, 48-59   DOI   ScienceOn
15 Moreau F., Bond G. C., Taylor A. O., 2004, The influence of metal loading and pH during preparation on the CO oxidation activity of $Au/TiO_2$ catalysts, Chem. Commun., 1642-1643
16 Marban G., Fuertes A. B., 2005, Highly active and selective $CuOx/CeO_2$ catalyst prepared by a single- step citrate method for preferential oxidation of carbon monoxide, Appl. Catal. B, 57, 43-53   DOI   ScienceOn
17 Martinez-Arias A., Hungria A. B., Munuera G., Gamarra D., 2006, Preferential oxidation of CO in rich $H_2$ over CuO/CeO_2$: Details of selectivity and deactivation under the reactant stream, Appl. Catal. B, 65, 207-216   DOI   ScienceOn
18 Gong H., Hu J. Q., Wang J. H., Ong C. H., Zhu F. R., 2006, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sens. Actuators B, 115, 247-251   DOI   ScienceOn
19 Pillai U. R., Deevi S., 2006, Room temperature oxidation of carbon monoxide over copper oxide catalyst, Appl. Catal. B, 64, 146-151   DOI   ScienceOn
20 Jansson J., Palmqvist A. E. C., Fridell E., Skoglundh M., Osterlund L., Thormahlen P., Langer V., 2002, On the catalytic activity of $Co_3O_4$ in low-temperature CO oxidation, J. Catal., 211, 387-397   DOI
21 Taylor S. H., Hutchings G. J., Mirzaei A. A., 1999, Copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation, Chem. Commun., 1373-1374
22 Whittle D. M., Mirzaei A. A., Hargreaves J. S. J., Joyner R. W., Kiely C. J., Taylor S. H., Hutchings G. J., 2002, Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: Effect of precipitate ageing on catalyst activity, Phys. Chem. Chem. Phys., 4, 5915-5920   DOI   ScienceOn
23 Cameron D., Holliday R., Thompson D., 2003, Gold's future role in fuel cell systems, J. Power Sources, 118, 298-303   DOI   ScienceOn
24 Kuo C. N., Chen H. F., Lin J. N., Wan B. Z., 2007, Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air, Catal. Today, 122, 270-276   DOI   ScienceOn
25 Kim M. H., 2007, Current and future US Tier 2 vehicles program and catalytic emission control technologies to meet the future Tier 2 standards, Korean J. Chem. Eng., 24, 209-222   DOI
26 Schumacher B., Denkwitz Y., Plzak V., Kinne M., Behm R. J., 2004, Kinetics, mechanism, and the influence of H2 on the CO oxidation reaction on a $Au/TiO_2$ catalyst, J. Catal., 224, 449-462   DOI   ScienceOn
27 Gulari E., Guldur C., Srivannavit S., Osuwan S., 1999, Co oxidation by silver cobalt composite oxide, Appl. Catal. A, 182, 147-163   DOI   ScienceOn
28 Ghenciu A. F., 2002, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems, Cur. Opin. Solid State Mater. Sci., 6, 389-399   DOI   ScienceOn
29 Epping K., Aceves S., Bechtold R., Dec J., 2002, The potential of HCCI combustion for high efficiency and low emission, SAE paper 2002-01-1923.
30 Kim M. H., Nam I. S., 2005, New opportunity for HC-SCR technology to control $NO_x$ emissions from advanced internal combustion engines, in 'A Specialist Periodical Report', Catalysis (Vol. 18) - A Review of Recent Literature, Spivey J. J., Senior Reporter, The Royal Society of Chemistry, Cambridge, 116pp