• Title/Summary/Keyword: Ti thickness

Search Result 1,119, Processing Time 0.027 seconds

Metal-insulator Transition in $(Sr_{0.75},\;La_{0.25})TiO_3$ Ultra-thin Films

  • Choi, Jae-Du;Choi, Eui-Young;Lee, Yun-Sang;Lee, Jai-Chan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.19.2-19.2
    • /
    • 2011
  • The $(Sr_{0.75},\;La_{0.25})TiO_3$ (SLTO) ultra-thin films with various thicknesses have been grown on Ti-O terminated $SrTiO_3$(100) substrate using Laser-Molecular Beam Epitaxy (Laser MBE). By monitoring the in-situ specular spot intensity oscillation of reflection high energy electron diffraction (RHEED), we controlled the layer-by-layer film growth. The film structure and topography were verified by atomic force microscopy (AFM) and high resolution thin film x-ray diffraction by the synchrotron x-ray radiation. We have also investigated the electronic band structure using x-ray absorption spectroscopy (XAS). The ultra thin SLTO film exhibits thickness driven metal-insulator transition around 8 unit cell thickness when the film thickness progressively reduced to 2 unit cell. The SLTO thin films with an insulating character showed band splitting in Ti $L_3-L_2$ edge XAS spectrum which is attributed to Ti 3d band splitting. This narrow d band splitting could drive the metal-insulator transition along with Anderson Localization. In optical conductivity, we have found the spectral weight transfer from coherent part to incoherent part when the film thickness was reduced. This result indicates the possibility of enhanced electron correlation in ultra thin films.

  • PDF

A Study on Powder Electroluminescent Device through Structure and Thickness Variation (구조 및 두께 변화에 따른 후막 전계발광 소자에 관한 연구)

  • Han, Sang-Mu;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1379-1381
    • /
    • 1998
  • Powder electroluminescent device (PELD) structured conventionally dielectric and phosphor layer, between electrode and their layer fabricated by screen printing splaying or spin coating method. To promote performance of PELDs, we approached the experiments for different structure and thickness variation of PELD. Thickness variation($30{\mu}m{\sim}130{\mu}m$) was taken. To investigate electrical and optical properties of PELDs, EL spectrum, transferred charge density using Sawyer-Tower's circuit brightness was measured. Variation of structure in PELDs was as follows: WK-1 (ITO/BaTiO3/ZnS:Cu/Silver paste), WK-2 (ITO/BaTiO3/ZnS:Cu/BaTiO3/ZnS:Silver paste), WK-3 (ITO/BaTiO3/ZnS:Cu/BaTiO3/Silver paste), WK-4(ITO/BaTiO3+ZnS:Cu/Silver paste) As a result, structure of the highest brightness appeared WK-4 possessed 60 ${\mu}m$ thickness. The brightness was 2719 cd/$m^2$ at 100V, 400Hz.

  • PDF

A study of WSi$_2$ film peeling off from Si substrate (텅스텐 실리사이드 박막 들뜸에 관한 연구)

  • 한성호;이재갑;김창수;이은구
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.1
    • /
    • pp.3-14
    • /
    • 1996
  • High temperature anneal of W-rich silicides, inferior to adherence compared with Si-rich silicides, resulted in the film peeling off from the Si-substrate when WSix thickness reached more than critical thickness. Investigation of the W-rich silicide films peeling off from the substrate revealed that the voids underneath the $WSi_2$ produced through silicide reaction were responsible for the poor adherence of W-rich silicide. In addition, internal stress in the film increased as the silicide thickness increased. In order to promote the adhesion of WSix to Si-substrate, thin Ti-layer was formed between WSi and Si-substrate(WSix/Ti/Si). No voids were observed in $WSi_2$/Ti/Si $N_2$-annealed at $1000^{\circ}C$, thereby leading to an increase of the critical thickness from ~1700$\AA$ to more than 2500$\AA$. However, higher resisiti-vity was obtained in WSix/Ti/Si than in WSix/Si. Finally, different silicide reaction mechanism for the structures(WSix/Si, WSix/Ti/Si) was proposed to explain the formation of voids as well as the role of thin Ti-layer.

  • PDF

The Effects of Film Thickness on the Dipolar Relaxation of $PbTiO_3$ Thin Films in the Microwave-Frequency Range (마이크로파 대역에서 $PbTiO_3$ 박막의 Dipolar Relaxation에 대한 박막 두께의 효과)

  • 이도영;김용조
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.142-142
    • /
    • 2003
  • The effects of film thickness on the dipolar relaxation of ferroelectric PbTiO$_3$ films were investigated in the microwave-frequency range. The dielectric constants ($\varepsilon$) and the dielectric losses (tan $\delta$) were successfully measured up to 30 ㎓ using interdigital capacitors. The PbTiO$_3$ thin films were deposited on the quartz substrate at room temperature and postannealed in oxygen atmosphere. As the film thickness increased, its grain size and tetragonality were enhanced. And the dipolar relaxation behavior began to appear in the thin films with approximately 20 nm thickness, since ferroelectric domains could not be formed hi small grains. The observed relaxation frequency (above 10 ㎓) was higher than the previous values reported in bulk ceramics. It can be correlated with the extremely small domain size of the thinfilms as shown by TEM. And, the Rayleigh constant [1] from domain wall motions was alsoinvestigated by LCR meter at 100 KHz.

  • PDF

The Study of Color and Hardness of TiN Thin Film by UBM Sputtering System (UBM Sputtering System에 의한 TiN막의 색상과 경도에 관한 연구)

  • Park, Moon Chan;Lee, Jong Geun;Joo, Kyung Bok
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: TiN films were deposited on sus304 by unbalanced magnetron sputtering system which was designed and developed as unbalancing the strength of the magnets in the magnetron electrode. The color and hardness of deposited TiN films was investigated. Methods: The cross sections of deposited films on silicon wafer were observed by SEM to measure the thickness of the films, the components of the surface of the films were identified by XPS, the components of the inner parts of the films were observed by XPS depth profiling. XPS high resolution scans and curve fittings of deposited films were performed for quantitative chemical analysis, Vickers micro hardness measurements of deposited films were performed with a nano indenter equipment. Results: The colors of deposited films gradually changed from light gold to dark gold, light violet, and indigo color with increasing of the thickness. It could be seen that the color change come from the composite change of three compound,$TiO_{x}N_{y}$, $TiO_2$, TiN. Especially, the composite change of$TiO_{x}N_{y}$ compound was thought to affect the color change with respect to thickness. Conclusions: Deposited films had lower than the value of general TiN film in Vickers hardness, which was caused by mixing three TiN, $TiO_2$,$TiO_{x}N_{y}$ compound in the deposited films. The increasing and decreasing of micro hardness with respect to thickness was thought to have something to do with the composite of TiN in the films.

  • PDF

Effects of the thin SiO$_{2}$ film at the Ti-Si interface on the formation of TiN/TiS$i_2$ bilayer (Ti-Si 계면의 얇은 산화막이 TiN/TiS$i_2$ 이중구조막 형성에 미치는 영향)

  • 이철진;성만영;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.242-248
    • /
    • 1996
  • The properties of TiN/TiSi$_{2}$ bilayer formed by a rapid thermal annealing is investigated when thin SiO$_{2}$ film exists at the Ti-Si interface. The competitive reaction for the TiN/TiSi_2 bilayer occurs above 600 .deg. C. The thickness of the TiSi$_{2}$ layer decreases with increasing SiO$_{2}$ film thickness and also decreases with increasing anneal temperture When the competitive reaction for the TiN/TiSi$_{2}$ bilayer is occured by rapid thermal annealing, the composition of TiN layer represents TiN$_{x}$O$_{y}$ due to the SiO$_{2}$ layer at the Ti-Si interface but the structures of the TiN and TiSi$_{2}$ layers were not changed.d.d.

  • PDF

Dielectric and Piezoelectric Characteristics of Low Temperature Sintering PbTiO3 System Ceramics with amount of Bi2O3 Addition (Bi2O3 첨가량에 따른 저온소결 PbTiO3계 세라믹스의 유전 및 압전특성)

  • Yoo, Ju-Hyun;Kim, Do-Hyung;Lee, Sang-Ho;Sohn, Eun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.9
    • /
    • pp.771-775
    • /
    • 2007
  • In this study, in order to develop low temperature sintering ceramics for thickness vibration mode multilayer piezoelectric transformer, $PbTiO_3$ system ceramics were fabricated using $Na_2CO_3,\;Li_2CO_3,\;MnO_2\;and\;Bi_2O_3$ as sintering aids and their dielectric and piezoeletric properties were investigated according to the amount of $Bi_2O_3$ addition. At the sintering temperature of $900^{\circ}C\;and\;Bi_2O_3$ addition of 0.1 wt%, density, grain size, thickness vibration mode eletromechanical coupling factor($k_t$), thickness vibration mode mechanical quality factor($Q_{mt}$) and dielecteic constant(${\varepsilon}_r$) showed the optimum value of $6.94g/cm^3,\;2.413{\mu}m$, 0.497, 3,162 and 209, respectively, for thickness vibration mode multilayer piezoelectric transformer application.

Studies on the Kinetics for the Formation Reaction $Ti_3AI$ by SHS (Self-propagating High-temperatuer Synthesis) Method (자체반응열 고온합성법에 의한 $Ti_3AI$ 생상반응의 동력학적 연구)

  • 전광식
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.569-574
    • /
    • 1998
  • The thickness of flame zone reaction rate and apparent activation energy in the formation reaction of $Ti_3AI$ intermetallic compound were investigated using SHS method which sustains the reaction spontaneously and utilizes the heat generated by thye exothermic reaction itself. In this reaction the thickness of flame zone was 1.4 mm and the reaction rate was $0.4g/\textrm{cm}^2{\cdot}sec$. Also the apparent activation energy calculated using from the experimental data obtained by controlling the realtive green density was 40kJ/mol.

  • PDF

Dependence of LaAlO3/SrTiO3 Interfacial Conductivity on the Thickness of LaAlO3 Layer Investigated by Current-voltage Characteristics (LaAlO3 두께에 따른 LaAlO3/SrTiO3 계면에서의 전류-전압 특성을 이용한 전도성 변화 연구)

  • Moon, Seon-Young;Baek, Seung-Hyub;Kang, Chong-Yun;Choi, Ji-Won;Choi, Heon-Jin;Kim, Jin-Sang;Jang, Ho-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.616-619
    • /
    • 2012
  • Oxides possess several interesting properties, such as ferroelectricity, magnetism, superconductivity, and multiferroic behavior, which can effectively be used oxide electronics based on epitaxially grown heterostructures. The microscopic properties of oxide interfaces may have a strong impact on the electrical transport properties of these heterostructures. It was recently demonstrated that high electrical conductivity and mobility can be achieved in the system of an ultrathin $LaAlO_3$ film deposited on a $TiO_2$-terminated $SrTiO_3$ substrate, which was a remarkable result because the conducting layer was at the interface between two insulators. In this study, we observe that the current-voltage characteristics exhibit $LaAlO_3$ thickness dependence of electrical conductivity in $TiO_2$-terminated $SrTiO_3$. We find that the $LaAlO_3$ layers with a thickness of up 3 unit cells, result in highly insulating interfaces, whereas those with thickness of 4 unit cells and above result in conducting interfaces.

Fabrication of Uniform TiO2 Blocking Layers for Prevention of Electron Recombination in Dye-Sensitized Solar Cells (염료감응형 태양전지의 전자재결합 방지를 위한 균일한 TiO2 차단층의 제조)

  • Bae, Ju-won;Koo, Bon-Ryul;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Uniform $TiO_2$ blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating $TiO_2$ BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform $TiO_2$ BL of 70 nm in thickness shows a superior power conversion efficiency of $7.58{\pm}0.20%$ because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage ($0.77{\pm}0.02V$) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density ($15.67{\pm}0.43mA/cm^2$) by efficient electron transfer pathways. Therefore, optimized $TiO_2$ BLs fabricated by USPD may allow performance improvements in DSSCs.