DOI QR코드

DOI QR Code

Fabrication of Uniform TiO2 Blocking Layers for Prevention of Electron Recombination in Dye-Sensitized Solar Cells

염료감응형 태양전지의 전자재결합 방지를 위한 균일한 TiO2 차단층의 제조

  • Bae, Ju-won (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Lee, Tae-Kuen (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 배주원 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 이태근 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2017.12.30
  • Accepted : 2018.01.14
  • Published : 2018.02.28

Abstract

Uniform $TiO_2$ blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating $TiO_2$ BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform $TiO_2$ BL of 70 nm in thickness shows a superior power conversion efficiency of $7.58{\pm}0.20%$ because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage ($0.77{\pm}0.02V$) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density ($15.67{\pm}0.43mA/cm^2$) by efficient electron transfer pathways. Therefore, optimized $TiO_2$ BLs fabricated by USPD may allow performance improvements in DSSCs.

Keywords

References

  1. K. H. Ko, Y. C. Lee and Y. J. Jung: J. Colloid Interface Sci., 283 (2005) 482. https://doi.org/10.1016/j.jcis.2004.09.009
  2. H. L. An, H. R. Kang, H. J. Sun, J. H. Han and H. J. Ahn: Korean J. Mater. Res., 25 (2015) 672. https://doi.org/10.3740/MRSK.2015.25.12.672
  3. J. W. Bae, B. R. Koo, H. R. An and H. J. Ahn: Ceram. Int., 41 (2015) 14668. https://doi.org/10.1016/j.ceramint.2015.07.189
  4. L. Jiang, L. Sun, D. Yang, J. Zhang, Y. J. Li, K. Zou and W. Q. Deng: ACS Appl. Mater. Interfaces, 9 (2017) 9576. https://doi.org/10.1021/acsami.6b14147
  5. H. Yu, S. Zhang, H. Zhao, G. Will and P. Liu: Electrochim. Acta, 54 (2009) 1319. https://doi.org/10.1016/j.electacta.2008.09.025
  6. J. Xia, N. Masaki, K. Jiang and S. Yanagida: J. Phys. Chem. C, 111 (2007) 8092. https://doi.org/10.1021/jp0707384
  7. J. Bandara and U. W. Pradeep: Thin Solid Films, 517 (2006) 952.
  8. D. B. Menzies, R. Cervini, Y. B. Cheng and G. P. Simson: J. Sol-Gel Sci. Technol., 32 (2004) 363. https://doi.org/10.1007/s10971-004-5818-0
  9. Z. S. Wang, M. Yanagida, K. Sayama and H. Sugihara: Chem. Mater., 18 (2006) 2912. https://doi.org/10.1021/cm0603102
  10. S. Ahmed, A. Du Pasquier, T. Asefa and Dunbar P. Birnie III: Adv. Energy Mater., 1 (2011) 879. https://doi.org/10.1002/aenm.201100121
  11. M. S. Goes, E. Joanni, E. C. Muniz, R. Savu, T. R. Habeck, P. R. Bueno and F. Fabregat-Santiago: J. Phys. Chem. C, 116 (2012) 12415.
  12. S. P. Lim, N. M. Huang, H. N. Lim and M. Mazhar: Ceram. Int., 40 (2014) 8045. https://doi.org/10.1016/j.ceramint.2013.12.156
  13. S. Suresh, G. E. Unni, C. Ni, R. S. Sreedharan, R. R. Krishnan, M. Satyanarayana, M. Shanmugam and V. P. M. Pillai: Appl. Surf. Sci., 419 (2017) 720. https://doi.org/10.1016/j.apsusc.2017.05.081
  14. J. W. Bae, B. R. Koo, T. K. Lee and H. J. Ahn: Korean J. Mater. Res., 27 (2017) 149.
  15. D. Y. Shin, J. W. Bae, B. R. Koo and H. J. Ahn: Korean J. Mater. Res., 27 (2017) 390. https://doi.org/10.3740/MRSK.2017.27.7.390
  16. J. M. Kim, B. R. Koo, H. J. Ahn and T. K. Lee: Korean J. Mater. Res., 25 (2015) 125. https://doi.org/10.3740/MRSK.2015.25.3.125
  17. L. Li, C. Xu, Y. Zhao, S. Chen and K. J. Ziegler: ACS Appl. Mater. Interfaces, 7 (2015) 12824. https://doi.org/10.1021/acsami.5b02041
  18. B. R. Koo, D. H. Oh and H. J. Ahn: Appl. Surf. Sci., 433 (2018) 27. https://doi.org/10.1016/j.apsusc.2017.10.078
  19. J. Chen, B. Li, J. Zheng, J. Zhao, H. Jing and Z. Zhu: Electrochim. Acta, 56 (2011) 4624. https://doi.org/10.1016/j.electacta.2011.02.097
  20. X. Sun, Q. Zhang, Y. Liu, N. Huang, P. Sun, T. Peng, T. Peng and X. Z. Zhao: Electrochim. Acta, 129 (2014) 276. https://doi.org/10.1016/j.electacta.2014.02.110