• Title/Summary/Keyword: Three-level converters

Search Result 79, Processing Time 0.022 seconds

An Study on the Improved Modeling and Double Loop Controller Design for Three-Level Boost Converter (Three-Level Boost Converter의 개선된 모델링 및 더블 루프 제어기 설계에 관한 연구)

  • Lee, Kyu-Min;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.442-450
    • /
    • 2020
  • A small-signal modeling approach for a three-level boost (TLB) converter and a design methodology for a double-loop controller are proposed in this study. Conventional modeling of TLB converters involves three state variables. Moreover, TLB converters have two operation modes depending on the duty ratio. Consequently, complex mathematical calculations are required for controller design. This study proposes a simple system modeling method that uses two state variables, unlike previous methods that require three state variables. Analysis shows that the transfer functions of the two operation modes can be expressed as identical equations. This condition means that the linear feedback controller can be applied to all operational ranges, that is, for full duty ratios. The design method for a double-loop controller using a PI controller is presented in step-by-step sequences. Simulation and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.

Hybrid ZVS Converter with a Wide ZVS Range and a Low Circulating Current

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.652-659
    • /
    • 2015
  • This paper presents a new hybrid soft switching dc-dc converter with a low circulating current and high circuit efficiency. The proposed hybrid converter includes two sub-converters sharing two power switches. One is a three-level PWM converter and the other is a LLC converter. The LLC converter and the three-level converter share the lagging-leg switches and extend the zero-voltage switching (ZVS) range of the lagging-leg switches from nearly zero to full load since the LLC converter can be operated at fsw (switching frequency) $\approx$ fr (series resonant frequency). A passive snubber is used on the secondary side of the three-level converter to decrease the circulating current on the primary side, especially at high input voltage and full load conditions. Thus, the conduction losses due to the circulating current are reduced. The output sides of the two converters are connected in series. Energy can be transferred from the input voltage to the output load within the whole switching period. Finally, the effectiveness of the proposed converter is verified by experiments with a 1.44kW prototype circuit.

Analysis and Implementation of a New Three-Level Converter

  • Lin, Bor-Ren;Nian, Yu-Bin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.478-487
    • /
    • 2014
  • This study presents a new interleaved three-level zero-voltage switching (ZVS) converter for high-voltage and high-current applications. Two circuit cells are operated with interleaved pulse-width modulation in the proposed converter to reduce the current ripple at the input and output sides, as well as to decrease the current rating of output inductors for high-load-current applications. Each circuit cell includes one half-bridge converter and one three-level converter at the primary side. At the secondary side, the transformer windings of two converters are connected in series to reduce the size of the output inductor or switching current in the output capacitor. Based on the three-level circuit topology, the voltage stress of power switches is clamped at $V_{in}/2$. Thus, MOSFETs with 500 V voltage rating can be used at 800 V input voltage converters. The output capacitance of the power switch and the leakage inductance (or external inductance) are resonant at the transition interval. Therefore, power switches can be turned on under ZVS. Finally, experiments verify the effectiveness of the proposed converter.

Active Damping of LLCL Filters Using PR Control for Grid-Connected Three-Level T-Type Converters

  • Alemi, Payam;Jeong, Seon-Yeong;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.786-795
    • /
    • 2015
  • In this paper, an active damping control scheme for LLCL filters based on the PR (proportional-resonant) regulator is proposed for grid-connected three-level T-type PWM converter systems. The PR controller gives an infinite gain at the resonance frequency. As a result, the oscillation can be suppressed at that frequency. In order to improve the stability of the system in the case of grid impedance variations, online grid impedance estimation is applied. Simulation and experimental results have verified the effectiveness of the proposed scheme for three-phase T-type AC/DC PWM converters.

New Three-Level PWM DC/DC Converter - Analysis, Design and Experiments

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.30-39
    • /
    • 2014
  • This paper studies a new three-level pulse-width modulation (PWM) resonant converter for high input voltage and high load current applications. In order to use high frequency power MOSFETs for high input voltage applications, a three-level DC converter with two clamped diodes and a flying capacitor is adopted in the proposed circuit. For high load current applications, the secondary sides of the proposed converter are connected in parallel to reduce the size of the magnetic core and copper windings and to decrease the current rating of the rectifier diodes. In order to share the load current and reduce the switch counts, three resonant converters with the same active switches are adopted in the proposed circuit. Two transformers with a series connection in the primary side and a parallel connection in the secondary side are adopted in each converter to balance the secondary side currents. To overcome the drawback of a wide range of switching frequencies in conventional series resonant converters, the duty cycle control is adopted in the proposed circuit to achieve zero current switching (ZCS) turn-off for the rectifier diodes and zero voltage switching (ZVS) turn-on for the active switches. Finally, experimental results are provided to verify the effectiveness of the proposed converter.

High-Efficiency and High-Power-Density 3-Level LLC Resonant Converter (고효율 및 고전력밀도 3-레벨 LLC 공진형 컨버터)

  • Gu, Hyun-Su;Kim, Hyo-Hoon;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.153-160
    • /
    • 2018
  • Recent trends in high-power-density applications have highlighted the importance of designing power converters with high-frequency operation. However, conventional LLC resonant converters present limitations in terms of high-frequency driving due to switching losses during the turn-off period. Switching losses are caused by the overlap of the voltage and current during this period, and can be decreased by reducing the switch voltage. In turn, the switch voltage can be reduced through a series connection of four switches, and additional circuitry is essential for balancing the voltage of each switch. In this work, a three-level LLC resonant converter that can operate at high frequency is proposed by reducing switch losses and balancing the voltages of all switches with only one capacitor. The voltage-balancing principle of the proposed circuit can be extended to n-level converters, which further reduces the switch voltage stress. As a result, the proposed circuit is applicable to high-input applications. To confirm the validity of the proposed circuit, theoretical analysis and experimental verification results from a 350 W-rated prototype are presented.

A Main Power Supply for Railway Vehicles using 3-level converters (3레벨 컨버터를 이용한 철도차량용 주 전력변환장치)

  • Rho Sung-Chan;Kim Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.646-652
    • /
    • 2003
  • AS a main Power Supply of the Railroad Vehicles, a three-Level ZVZCS DC/DC Converter is proposed in this paper. The proposed three-Level DC/DC Converter achieves zero voltage and zero current switching for the main switches. Its attribute is that the voltage across the switches is half the value of the input voltage. Also. using a diode and secondary side of the transformer, and simple auxiliary circuits it achieves zero current switching of the auxiliary switches. The principle operation and simulation results are included.

  • PDF

Optimal Two Degrees-of-Freedom Based Neutral Point Potential Control for Three-Level Neutral Point Clamped Converters

  • Guan, Bo;Doki, Shinji
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.119-133
    • /
    • 2019
  • Although the dual modulation wave method can solve the low-frequency neutral point potential (NPP) fluctuation problem for three-level neutral point clamped converters, it also increases the switching frequency and limits the zero-sequence voltage. That makes it harmful when dealing with the NPP drift problem if the converter suffers from a long dead time or asymmetric loads. By introducing two degrees of freedom (2-DOF), an NPP control based on a search optimization method can demonstrate its ability to cope with the above mentioned two types of NPP problems. However, the amount of calculations for obtaining an optimal 2-DOF is so large that the method cannot be applied to certain industrial applications with an inexpensive digital signal processor. In this paper, a novel optimal 2-DOF-based NPP control is proposed. The relationships between the NPP and the 2-DOF are analyzed and a method for directly determining the optimal 2-DOF is also discussed. Using a direct calculation method, the amount of calculations is significantly reduced. In addition, the proposed method is able to maintain the strongest control ability for the two types of NPP problems. Finally, some experimental results are given to confirm the validity and feasibility of the proposed method.

Design of an LCL-Filter for Three-Parallel Operation of Power Converters in Wind Turbines

  • Jeong, Hae-Gwang;Yoon, Dong-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.437-446
    • /
    • 2013
  • This paper proposes a design scheme for an LCL-filter used for the three-parallel operation of the power converters in high-capacity wind turbines. The designs of the power devices and grid connected filter are difficult due to the high level voltages and currents in huge-capacity wind turbines. To solve these problem, this paper presents three-parallel operation and LCL-filter design techniques optimized by parallel operation. Furthermore, the design of an inverter side inductance of the LCL-filter is discussed in detail considering the switching modulation method. Simulation and experimental results demonstrate the validity of the designed filter and wind turbines.

Natural Balancing of the Neutral Point Potential of a Three-Level Inverter with Improved Firefly Algorithm

  • Gnanasundari, M.;Rajaram, M.;Balaraman, Sujatha
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1306-1315
    • /
    • 2016
  • Modern power systems driven by high-power converters have become inevitable in view of the ever increasing demand for electric power. The total power loss can be reduced by limiting the switching losses in such power converters; increased power efficiency can thus be achieved. A reduced switching frequency that is less than a few hundreds of hertz is applied to power converters that produce output waveforms with high distortion. Selective harmonic elimination pulse width modulation (SHEPWM) is an optimized low switching frequency pulse width modulation method that is based on offline estimation. This method can pre-program the harmonic profile of the output waveform over a range of modulation indices to eliminate low-order harmonics. In this paper, a SHEPWM scheme for three-phase three-leg neutral point clamped inverter is proposed. Aside from eliminating the selected harmonics, the DC capacitor voltages at the DC bus are also balanced because of the symmetrical pulse pattern over a quarter cycle of the period. The technique utilized in the estimation of switching angles involves the firefly algorithm (FA). Compared with other techniques, FA is more robust and entails less computation time. Simulation in the MATLAB/SIMULINK environment and experimental verification in the very large scale integration platform with Spartan 6A DSP are performed to prove the validity of the proposed technique.