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Abstract

In this paper, an active damping control scheme for LLCL filters based on the PR (proportional-resonant) regulator is proposed
for grid-connected three-level T-type PWM converter systems. The PR controller gives an infinite gain at the resonance
frequency. As a result, the oscillation can be suppressed at that frequency. In order to improve the stability of the system in the
case of grid impedance variations, online grid impedance estimation is applied. Simulation and experimental results have verified
the effectiveness of the proposed scheme for three-phase T-type AC/DC PWM converters.
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I.  INTRODUCTION

In recent years, voltage source converters (VSC) have been
widely employed for grid-connected applications with the
advantage of bidirectional power flow and its ability to
control the voltage and power factor. In particular, multilevel
converters such as T-type three-level inverters have been
used due to their higher performance and efficiency when
compared with the two-level converters [1]-[3]. To suppress
switching harmonics, a large size filter inductor is needed in
the VSC. However, this deteriorates the system dynamic
performance and increases the cost of the inductor in high
power applications.

Due to the advantages in terms of cost and dynamics, LCL
filters are preferred over L filters for grid-connected PWM
converters since smaller inductors can be used in the LCL
filters. However, there are drawbacks of LCL filters such as
the resonance phenomena and the complex control algorithm
[4]-[7]. To suppress the filter resonance, a number of passive
and active damping methods have been proposed [8]-[16].
The passive damping methods are simple and reliable, but
power loss is an issue especially for high power applications
[8]-[10]. On the other hand, the active damping schemes do
not increase power losses, but the control algorithm is
modified to suppress resonance [11]-[17]. In [12], [13], an
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Fig. 1. Grid-connected three-level T-type converters with LLCL
filters.

active damping method based on a virtual resistor has been
proposed. However, an extra capacitor current sensor is
required. In [14], a genetic algorithm has been applied to tune
the notch filter for the active damping of LCL filters.
Although no extra sensor is needed, the optimization
algorithm is complicated. The PR regulator has been
discussed for LCL filters in [15], [16]. However, the grid
impedance variation has not been investigated which is an
issue in the case of a variable grid impedance.

To reduce the inductor size in LCL filters, a new structure
for the LLCL filters of single-phase VSCs has been proposed
[18]. To suppress the resonance of the LLCL filters, the
passive damping method has been employed, where an
additional resistor was used [9]-[11].

This paper is an extended version of [16], where an active
damping method based on the PR control has been proposed
for the LLCL filters of three-level T-type converters. To
suppress the resonance in the case of variable grid
impedances, the online grid impedance estimation method is
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Fig. 2. Bode plots of transfer functions in LCL and LLCL
filters. (@) 6,(s)=1,(5)Ni(5)- @) G,(5)= LGN

applied. In addition, the system stability is analyzed to show
the wvalidity of the proposed control algorithm. The
effectiveness of the proposed method is verified by
simulation and experimental results obtained for a three-level
T-type converter.

Il. SYSTEM DESCRIPTION

A. Three-Level T-type AC/DC PWM Converters

A three-level T-type AC/DC PWM converter is shown in
Fig. 1. It is connected to the grid through LLCL filters. The
grid is modeled as a sinusoidal voltage source with variable
line impedances. A resistive load is connected to the DC
output terminal of the converter. For the PWM converter, the
voltage equations are expressed in the synchronous reference
frame as [19]:

. di .
— di
€ge = Rige + L—"5— L + Vg

1)

i
© 4+ wlig, + Ve @

€ = Rig +L
where:

€4e 1 € - dg-axis grid voltages
Iy Iqe - dg-axis converter currents

Vier qu : dg-axis converter voltages

@ : angular frequency of the grid voltage
R : sum of the resistances in the filter inductors (R, +R,)

L : sum of grid- and converter-side inductors (L +L,)

By aligning the g-axis of the synchronous reference frame to
the grid voltage, €, =0. The DC-link voltage dynamics can

be expressed as:

3)
where:

V. - DC-link voltage

iDC : converter-side DC current

I, : load current

where the losses in the filter and the converter are neglected.

B. LLCL Filters

In LLCL filters, the transfer functions of the grid and
converter currents to the converter voltage are expressed as:

6()- l,(s) L,Cs*+1 @)
VO (LCL L) +LLC)S +H (L + L )s
G.(5)= l.(s) (L, +L,)Cs* +1 5)
V) (L +L)+LLC)S (L + L )s
where:

L, =L, +L, (6)
From (4) and (5), the resonance frequency in the LLCL filters
is given by:

f,eszl\/ LN @)
27\ (L-L,-C)+(L+L)LC

The frequency responses of the grid and converter currents
to the converter voltage are shown in Fig. 2(a) and (b),
respectively. It can be seen that the impedance of the LLCL
filters is very low near the switching frequency due to the
series inductor in the capacitor branch.

C. Parameter Design of LLCL Filters
In the design of the filter, some limitations on the
parameter values should be considered as follows [6], [8]:

1) The converter-side inductor | is determined based

on the allowable current ripple of the converter.

Ve o (®)
16IrpMa><. sw

Where:

irpM : maximum ripple component in the rated

current
f,,: switching frequency
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Fig. 3. Control block diagram of the grid-connected PWM converter with LLCL filters.

The grid-side inductor L, is designed according to
the IEEE 519-1992 standard recommendations, where
harmonic currents higher than the 35" order
component should be less than 0.3% of the
fundamental.

2) The capacitor value C is determined based on the
reactive power absorbed under the rated condition,
where the upper limit is given by:

o 0.05P, e 9)
Vio
where:
Vg : fundamental voltage of the grid

@ : fundamental frequency in radian per second

3) The series inductor L, is designed depending on the

capacitance in the LLCL filters.
impedance at the switching frequency,

1

- 2
., C

4) The resonance frequency is in the range between ten

times the fundamental frequency and a half of the
switching frequency.

For the zero

L, (10)

I1l. PROPOSED ACTIVE DAMPING CONTROL

Fig. 3 shows the control block diagram of the
grid-connected T-type converter with the LLCL filters, where
the PR control is applied for active damping.

A. Active Damping Control
The PR controller is operated in the abc-reference frame,
where the steady-state error is eliminated at the specified
resonance frequency. The transfer function of the PR
controller is given as
K.s

2 2
S” + @y

G () =K, + (11)

where:
K pr - proportional gain

K, :resonant gain

a)res . resonance frequency

The magnitude and phase characteristics of the open-loop
transfer function for the PR controller with respect to the
different resonant gains are illustrated in Fig. 4. It can be seen
that the higher resonant gains can eliminate the steady-state
error. However, this leads to a wider bandwidth.
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B. Grid Impedance Estimation

To suppress the resonance effectively, the grid impedance
needs to be known. In this study, an online estimation of the
grid impedance is applied to find the total inductance on the
grid side of the LLCL filters [20]. When a voltage component
of the specified frequency is added to the PWM voltage
reference, a harmonic current component is incurred at the
same frequency. Next, the Discrete Fourier analysis for the
specific injected harmonic component is applied as:

F = ng(n)cos(hhj jNZ‘ig(n)sm(ZEhnj

Eh =Fy + iji (12)
where:
N : number of the samples per fundamental period

g(n):input signal (voltage or current) at the sampling
point n
Eh :complex Fourier vector of the h™ harmonic of the
input signal
F,, : real partof F,
F,;: imaginary part of F,
Then, the harmonic current and voltage components are

obtained from (12). From these the grid impedance at the
specified harmonic frequency is calculated as:

Ve .
n, = W = Ze ‘= Rgrid + Ja)hx Lgrid (13)
where:
Rgrid - grid resistance at the injected harmonic h, .
Lngid - grid inductance at the injected harmonic h. .

The grid impedance in terms of the fundamental frequency is
obtained by:

Z(60Hz) =R, (14)

Fig. 5 illustrates variations of the filter resonance
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Fig. 6. The proposed closed-loop current control in stationary
reference frame.

frequency according to variations of the grid impedance. By

increasing the grid inductance from | ., =0t005mH the
filter resonance frequency, f__, varies from 1.9 kHz to 1.48

kHz.

IV. STABILITY ANALYSIS

To determine the feasibility of the proposed active
damping method, the system stability is analyzed. The overall
current control scheme is depicted in Fig. 6. Since the Pl

current controller (G, (s) =K, +K;/s) is used in the
synchronous reference frame, its equivalent form for the
transfer function, G ((S). in the stationary reference frame
is given by:

Krls
s? +a)

GPR_f (S) = Kp1 (15)
where:
K 1 proportional gain

K,, : resonant control gain

A BPF (band-pass filter) is needed for the PR controller to
damp the filter resonance, where the cut-off frequency is
equal to the resonance frequency of the LLCL filters. The
transfer function of the BPF is expressed as:

@

Q (16)

GBPF(S)= P
P+ 2s+af
Q
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where:
@, - center frequency
Q: quality factor [%j
B

B : bandwidth
Therefore, the transfer function of the current controller,

G,(s), is the sum of G, ((s) in (15) and the

multiplication of G, (s) and Gy (s) in (11) and (16)

respectively, which can be expressed as:
G.(s)= GPR_f (s)+ GPR_r (5)Gepr (9) a7
The stability is evaluated in the Z-domain, where one
sampling delay of the digital processing and one-half a
sampling delay of the PWM converters are involved in the
PWM block, which is expressed as:
1
Goypy (5) = ———— (18)
pune () 15T s+1

Then, the open-loop transfer function of the current control
system is expressed as:

G, = GPR_f (5)Gpum (8)Gy(S) (19)
To analyze the frequency response of the proposed current

control system, the closed-loop transfer function in (20) is
investigated.

_Grr_(8)Gpum (8)Gy(5)

¢ =1+G,(5)Gpyy (5)G,(5)

The root loci for the proposed current control system are
illustrated in Fig. 7. In Fig. 7(a), the root loci is plotted at the

(20)

switching frequency of fSW =4 kHz. The control system is

stable since all of the poles are placed inside the unit cycle.
As the switching frequency is increased, the stability may be
degraded. However, by tuning the controller gains, the

f,=6kHz and
f,, =8 kHz, as illustrated in Fig. 7(b) and (c), respectively.

system can still be stable at
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Fig. 8. Bode plot of the open-loop current control system.
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Fig. 9. Step response of the closed-loop current control system.

A further increase of the switching frequency may cause
instability since the system poles are placed outside the unit
cycle.

The frequency response of (19) is illustrated in Fig. 8

where the controller gains are Kp =9, K, =3000,
Kpr =6,K, =50 and the bandwidth of the controller is

approximately 500 Hz, which results from the definition of
GM =-3dB in the closed-loop control system. A
band-pass-filer (BPF) with a cut-off frequency of 1.9 kHz and
a bandwidth of 200 Hz are employed to extract the resonant
components in the grid currents. In order to guarantee

stability, a phase margin of PM >45" and a gain margin
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TABLE |
PWM CONVERTER PARAMETERS
Parameters Value
Rated Power 25kW
Input AC voltage 380V, /60 Hz
DC-link voltage 600 V
Switching frequency 4 kHz
DC-link capacitance 2,500 pF
TABLE I
FILTER PARAMETERS
Parameters LLCL LCL
Converter-side inductor L, L, | L, L,
L;(mH), Grid-side 3
Inductor L,(mH) 12 103512 0.35
Capacitor (UF) 20 20
Series inductor (UH) 80 0

GM >6dB are generally desirable [13], [21]. Fig. 8 shows
that the gain and phase margins of the open-loop current
control system are 13 dB and 46", respectively.

Fig. 9 shows the step responses of the closed-loop system
in (20), where a resonance phenomenon does not appear.

V. SIMULATION RESULTS

A simulation is performed for the three-level T-type PWM
converter. The simulation parameters are listed in Table I.
The different parameters of the filters are shown in Table II.

Fig. 10 illustrates the performance of the grid impedance
estimation. The estimated and real values of the grid
inductance are shown in (a), where the estimation error is less
than 5%. In (b), the magnitude of the injected harmonic and
its frequency are shown. The distortion in the grid current,
due to the harmonic injection, appears as shown in (c). In (d),
the resonance frequency of the LLCL filters for different grid
impedances is illustrated, where the resonance frequency
varies from 1.9 kHz in the case of zero grid impedance to
1.48 kHz in the case of a grid impedance of 0.5 mH.

Fig. 11 shows the grid and converter currents and the FFT
spectra in the case | (L;=1.2 mH, L,= 0.8 mH) of LCL filters.
The magnitude of the dominant harmonic component in the
grid current is lower than 0.1 A (0.18% of the fundamental
component). The total harmonic distortion (THD) factors are
listed in Table Ill. For this Case | the THD is 2.91%.

Case Il of the LCL filters (L;=1.2 mH, L,= 0.35 mH) is
illustrated in Fig. 12, where the dominant harmonic
magnitude in the grid current is lower than 0.3 A (0.56 % of
the fundamental current) with a THD of 5.12%. It is obvious
that Case Il of the LCL filters does not meet the requirement
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Fig. 10. Grid impedance estimation. (a) Grid inductance. (b)
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of the IEEE standard 519-1992.

Case Il of the LLCL filters (L, =1.2 mH, L, = 0.35 mH,
and L; = 0.08 mH) is shown in Fig. 13, where the magnitude
of the dominant harmonic in the grid current is lower than
0.92 A (0.17 % of the fundamental component) with a THD
of 2.64% (Table 11I).

V1. EXPERIMENTAL RESULTS

To verify the proposed damping control, experiments have
been conducted on a 3-kW converter system. A 32-b DSP
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TABLE IlI
THD AND SIDEBAND HARMONIC MAGNITUDE OF THE GRID
CURRENT IN DIFFERENT CASES

Case I: Case Il: | Case lll:
LCL LCL LLCL
THD (%) 291 5.12 2.64
Dominant harmonic
magnitude per 0.18 0.56 0.17
fundamental (%)
g = =
s2g ¥ e -0
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Fig. 12. Grid and converter currents with FFT spectra in case 1l
of LCL filters: L;=1.2 mH, L,=0.35 mH.
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Fig. 13. Grid and converter currents with FFT spectra in case 111
of LLCL filters: L;=1.2 mH, L,=0.35 mH, L{=0.08 mH.

chip (TMS320F28335) is used for the main controller. The
parameters of the three-level T-type converter are listed in
Table. IV. The PWM frequency of the converter is 5 kHz and
the dead time is set to 2 ps. For the IGBT module
(4MBI300VG-120R-50), two gating drivers have been
employed such as VLA513-01R for the mid-point IGBTs and

PN T I | R
— = ~
i |
- i '

Fig. 14. Three-level T-type PWM converter.

TABLE IV
PWM CONVERTER PARAMETERS
Parameters Value
Power rating 3kW
Input AC voltage 220V, /60 Hz
DC-link voltage 340V
Switching frequency 5 kHz
DC-link capacitance 2,500 pF
TABLEV
FILTER PARAMETERS
Parameters LLCL LCL
Converter-side inductor L, L, L, L,
L;(mH), Grid-side 1
Inductor L,(mH) 2 04 2 0.4
Capacitor (UF) 10 10

Series inductor (uH) 100 0

VLA542-01 for the leg IGBTs. For the reduced-scale system
of the simulation, the LLCL filters are redesigned by the
same procedure described in section Il (Table. V). Fig. 14
shows the three-level T-type PWM converter used for the
tests.

The grid and converter currents and the FFT spectra are
shown in Fig. 15, for Case | of the LCL filters (L,=2 mH,
L,= 1 mH) where the magnitude of the dominant harmonic
component in the grid current is lower than 0.021 A (0.2% of
the fundamental component) with a THD of 3.72%.

Fig. 16 illustrates the same waveforms as in Fig. 15, in
Case Il of the LCL filters (L;=2 mH, L,= 0.4 mH), where the
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TABLE VI
THD AND SIDEBAND HARMONICS MAGNITUDE OF THE GRID
CURRENT IN DIFFERENT CASES

Case I: Case Il: Case IlI:
LCL LCL LLCL
THD (%) 3.72 4.04 2.47
Dominant harmonic
magnitude per 0.2 0.46 0.13
fundamental (%)

dominant harmonic magnitude in the grid current is lower
than 0.052 A (0.46 % of the fundamental current) with a
THD of 4.04%. It is obvious that Case Il of the LCL filters
does not meet the requirement of the IEEE standard. In Case
111 of the LLCL filters (L; =2 mH, L, =0.4 mH, and L = 0.1
mH), as shown in Fig. 17, the magnitude of the dominant
harmonic in the grid current is lower than 0.015 A (0.13 % of
the fundamental component) with a THD of 2.47% (Table
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Fig. 17. Grid and converter currents with FFT spectra in case 111

of LLCL filters: L;=2 mH, L,=0.4 mH, L{=0.1 mH.
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Fig. 18. Grid currents and FFT spectra with LLCL filters. (a)
Lgrid =0.1 mH. (b) I—grid =0.2 mH.

V1).

Fig. 18 shows the grid phase currents and FFT spectra in
the case of different grid impedances. Even though the grid
impedance is changed from 0.1 mH to 0.2 mH, the PR
controller can suppress the resonance effectively with the
estimated grid impedance. In addition, a THD of about 2.4%
in the grid currents is within the acceptable level.

Fig. 19 shows the converter performance in the case of a
resistive load application, where the grid current and the
g-axis converter current are shown in (a) and (b), respectively.
The DC-link voltage is fluctuated at the point where the
converter g-axis current changes abruptly, where the under-
shoot in the DC-link voltage is lower than 10% as shown in
(c). The converter phase current is illustrated in (d). As can
be seen, it is more distorted than the grid current.
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Fig. 20 shows the performance of the converter in the case
of unbalanced grid voltages, where one phase-voltage of the
grid is decreased by 20% as shown in (a). The grid phase
current in the case of resistive load variations is shown in (b),
where the switching ripples meet the IEEE standard of 0.3%.
The fluctuations in the DC-link voltage do not exceed 10 %
as shown in (c), which is acceptable under this condition.

VII. CONCLUSION

In this paper, an active damping method using a PR
controller has been proposed for the LLCL filters connected

to the three-level T-type PWM converter. In addition, the grid
impedance has been estimated online to compensate for the
resonance frequency of the filter in the case of a variable grid
impedance. The damping effect of the PR controller on LLCL
filters has been verified by simulation and experimental
results. In the LLCL filters, the grid-side inductor has been
reduced by 60%, when compared with the LCL filters, from
0.8 mH to 0.35 mH in the simulation and from 1 mH to 0.4
mH in the experiment. In this case, the THD and dominant
harmonic component of the grid current have met the IEEE
standard. It has been shown that the control performance for
the LLCL filters is satisfactory both in the transient state and
under grid voltage unbalances.
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