• Title/Summary/Keyword: Three-dimensional microstructures

Search Result 61, Processing Time 0.032 seconds

Development of Large-area Two-photon Stereolithography Process for the Fabrication of Large Three-dimensional Microstructures (대면적 3 차원 마이크로 형상제작을 위한 스테이지 스캐닝 시스템을 이용한 이광자 흡수 광조형 공정 개발)

  • Lim, Tae-Woo;Son, Yong;Yi, Shin-Wook;Kong, Hong-Jin;Park, Sang-Hu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • Two-photon stereolithography is recognized as a promising process for the fabrication of three-dimensional (3D) microstructures with 100 nm resolution. Generally, beam-scanning system has been used in the conventional process of two-photon stereolithography, which is limited to the fabrication of micro-prototypes in small area of several tens micrometers. For the applications to 3D high-functional micro-devices, the fabrication area of the process is required to be enlarged. In this paper, large-area two-photon stereolithography (L-TPS) employing stage scanning system has been developed. Continuous scanning method is suggested to improve the fabrication speed and parameter study is conducted. An objective lens of high numerical aperture (N.A.) and high strength material were employed in this system. Through this work, 3D microstructures of $600*600*100\;{\mu}m$ were fabricated.

A Study on the Fabrication of Various 3D Microstructures using Polymer Deposition System (폴리머 적층 시스템을 이용한 다양한 3 차원 미세 구조물 제작에 관한 연구)

  • Kim, Jong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.686-692
    • /
    • 2012
  • Solid free-form fabrication (SFF) technology was developed to fabricate three-dimensional (3D) scaffolds for tissue engineering (TE) applications. In this study, we developed a polymer deposition system (PDS) and created 3D microstructures using a bioresorbable polycaprolactone (PCL) polymer. Fabrication of 3D scaffolds by PDS requires a combination of several devices, including a heating system, dispenser, and motion controller. The system can process a polymer with extremely high precision by using a 200 ${\mu}m$ nozzle. Based on scanning electron microscope (SEM) images, both the line width and the piled line height were fine and uniform. Several 3D micro-structures, including the ANU pattern (a pattern named after Andong National University), $45^{\circ}$ pattern square, frame, cylindrical, triangular, cross-shaped, and hexagon, have been fabricated using the polymer deposition system.

The Microstructures of Soybean Milk Curds prepared by Different Coagulation Methods

  • Lee, Chul-Woo;Jo, Gab-Yeon
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.259-262
    • /
    • 1997
  • The microstructures of soybean milk curds, prepared by different coagulation methods, were observed by the scaning electron microscope. Th curd coagulated by theaddition of bacerial soybean mil clotting enzyme showed little textural changes and gave smoother gel than those prepared either by lactic acid fermentation using Streptococcus thermophilus or by the addition of CaSO$_4$. The curds obtained by lactic acid fermentation and by the addition of inorganic salt exhibited three dimensional network structure which indicated harder gel than that prepared by soybean mil clotting enzyme.

  • PDF

Design of Microstereolithography System Based on Dynamic Image Projection for Fabrication of Three-Dimensional Microstructures

  • Cboi, Jae-Won;Ha, Young-Myoung;Lee, Seok-Hee;Choi, Kyung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2094-2104
    • /
    • 2006
  • As demands for complex microstructures with high aspect ratios have increased, the existing methods, MEMS and LIGA, have had difficulties coping with the number of masks and fabricable heights. A microstereolithography technology can meet these demands because it has no need of masks and is capable of fabricating high aspect ratio microstructures. In this technology, 3D part is fabricated by stacking layers, 2D sections, which are sliced from STL file, and the Dynamic Image Projection process enables the resin surface to be cured by a dynamic image generated with $DMD^{TM}$ (Digital Micromirror Device) and one irradiation. In this paper, we address optical design process for implementing this microstereolithography system that takes the light path based on DMD operation and image-formation on the resin surface using an optical design program into consideration. To verify the performance of this implemented microstereolithography system, complex 3D microstructures with high aspect ratios were fabricated.

Development of Nano-Stereolithography Process for Precise Fabrication of Three-Dimensional Micro-Devices (3차원 마이크로 디바이스 개발을 위한 나노 스테레오리소그래피 공정 개발에 관한 연구)

  • Park Sang-Hu;Lim Tae Woo;Yang Dong-Yol;Yi Shin Wook;Kong Hong-Jin;Lee Kwang-Sup
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.45-49
    • /
    • 2006
  • A nano-stereolithography (NSL) process has been developed for the fabrication of three-dimensional (3D) micro-devices with high spatital resolution of approximately 100 nm. In the NSL process, a complicated 3D structure can be created by stacking layer-by-layer, so it does not require any sacrificial layer or any supporting structure. A laminated layer was fabricated by means of solidifying liquid-state monomers using two-photon absorption (TPA) which was induced by a femtosecond laser. When the fabrication of a 3D stacked structure was finished, unsolidified liquid resins were rinsed by ethanol to develop the fabricated structures; then, the polymerized structure was only left on the glass substrate. Through this work, several 3D microstructures such as a micro-channel, shell structures, and photonic crystals were fabricated to evaluate the possibility of the developed system.

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures (하이브리드 자외선 노광법을 이용한 3차원 고종횡비 미소구조물 제작)

  • Park, Sungmin;Nam, Gyungmok;Kim, Jonghun;Yoon, Sang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.8
    • /
    • pp.731-736
    • /
    • 2016
  • Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

A Brief Comment on Atom Probe Tomography Applications

  • Seol, Jae-Bok;Kim, Young-Tae;Park, Chan-Gyung
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.127-133
    • /
    • 2016
  • Atom probe tomography is a time-of-flight mass spectrometry-based microanalysis technique based on the field evaporation of surface atoms of a tip-shaped specimen under an extremely high surface electric field. It enables three-dimensional characterization for deeper understanding of chemical nature in conductive materials at nanometer/atomic level, because of its high depth and spatial resolutions and ppm-level sensitivity. Indeed, the technique has been widely used to investigate the elemental partitioning in the complex microstructures, the segregation of solute atoms to the boundaries, interfaces, and dislocations as well as following of the evolution of precipitation staring from the early stage of cluster formation to the final stage of the equilibrium precipitates. The current review article aims at giving a comment to first atom probe users regarding the limitation of the techniques, providing a brief perspective on how we correctly interprets atom probe data for targeted applications.

Material feature representation and identification with composite surfacelets

  • Huang, Wei;Wang, Yan;Rosen, David W.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.370-384
    • /
    • 2016
  • Computer-aided materials design requires new modeling approaches to characterize and represent fine-grained geometric structures and material compositions at multiple scales. Recently, a dual-Rep approach was developed to model materials microstructures based on a new basis function, called surfacelet. As a combination of implicit surface and wavelets, surfacelets can efficiently identify and represent planar, cylindrical, and ellipsoidal geometries in material microstructures and describe the distribution of compositions and properties. In this paper, these primitive surfacelets are extended and composite surfacelets are proposed to model more complex geometries. Composite surfacelets are constructed by Boolean operations on the primitives. The surfacelet transform is applied to match geometric features in three-dimensional images. The composition of the material near the identified features can then be modeled. A cubic surfacelet and a v-joint surfacelet are developed to demonstrate the reverse engineering process of retrieving material compositions from material images.