Browse > Article
http://dx.doi.org/10.1016/j.jcde.2016.06.005

Material feature representation and identification with composite surfacelets  

Huang, Wei (HP Labs, Palo Alto)
Wang, Yan (School of Mechanical Engineering, Georgia Institute of Technology)
Rosen, David W. (School of Mechanical Engineering, Georgia Institute of Technology)
Publication Information
Journal of Computational Design and Engineering / v.3, no.4, 2016 , pp. 370-384 More about this Journal
Abstract
Computer-aided materials design requires new modeling approaches to characterize and represent fine-grained geometric structures and material compositions at multiple scales. Recently, a dual-Rep approach was developed to model materials microstructures based on a new basis function, called surfacelet. As a combination of implicit surface and wavelets, surfacelets can efficiently identify and represent planar, cylindrical, and ellipsoidal geometries in material microstructures and describe the distribution of compositions and properties. In this paper, these primitive surfacelets are extended and composite surfacelets are proposed to model more complex geometries. Composite surfacelets are constructed by Boolean operations on the primitives. The surfacelet transform is applied to match geometric features in three-dimensional images. The composition of the material near the identified features can then be modeled. A cubic surfacelet and a v-joint surfacelet are developed to demonstrate the reverse engineering process of retrieving material compositions from material images.
Keywords
Heterogeneous modeling; Implicit surface; Feature identification; Surfacelet transform;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 MacSleyne J, Uchic MD, Simmons JP, De Graef M. Three-dimensional analysis of secondary ${\gamma} precipitates in Rene-88 DT and UMF-20 superalloys. Acta Mater 2009;57(20)6251-67.   DOI
2 Xue F, Li H, Zhu Y, Xiong S, Zhang X, Wang T, Liang X, Qian Y. Solvothermal synthesis and photoluminescence properties of $BiPO_4$ nano-cocoons and nanorods with different phases. J Solid State Chem 2009;182(6)1396-400.   DOI
3 Chen J, Qiao Z, Wang L, Nie F, Yang G, Huang H. Fabrication of rectangular 2,6-diamino-3,5-dinitropyrazine-1-oxide microtubes. Mater Lett 2011;65(6)1018-21.   DOI
4 Konopka K, Olszowka-Myalska A, Szafran M. Ceramic-metal compo-sites with an interpenetrating network. Mater Chem Phys 2003;81(2)329-32.   DOI
5 Belavic D, Hrovat M, Pavlin M, Holc J. Some results obtained with diffusion patterning technology. Microelectron Int 2001;18(1)7-18.   DOI
6 Brzozowski E, Castro MS, Foschini CR, Stojanovic B. Secondary phases in Nb-doped $BaTiO_3$ ceramics. Ceram Int 2002;28(7)773-7.   DOI
7 Hao L, Lawrence J. $CO_2$ laser induced microstructure features in magnesia partially stabilised zirconia bioceramic and effects thereof on the wettability characteristics. Mater Sci Eng A 2004;364(1)171-81.   DOI
8 Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M. Devel-opment of microtubular SOFCs. J Fuel Cell Sci Technol 2008;5:3.
9 Rvachev VL. Theory of R-functions and some applications. (Naukova Dumka, 1982). [in Russian].
10 Shapiro V. Real functions for representation of rigid solids. Comput Aided Geom Des 1994;11(2)153-75.   DOI
11 TEM image of nano-C60 particle, available at .
12 Leavers VF, Boyce JF. The Radon transform and its application to shape parameterization in machine vision. Image Vision Comput 1987;5(2)161-6.   DOI
13 Gu Y, Li M, Wang J, Zhang Z. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon 2010;48(11)3229-35.   DOI
14 Koenig O, Fadel G. Application of genetic algorithms in the design of multi-material structures manufactured in rapid prototyping. In: Proceed-ings of the 10th annual solid freeform fabrication symposium; August 1999.
15 Kumar V, Burns D, Dutta D, Hoffmann C. A framework for object modeling. Comput-Aided Des 1999;31(9)541-56.   DOI
16 Qian X, Dutta D. Physics-based modeling for heterogeneous objects. J Mech Des 2003;125(3)416-27.   DOI
17 Liu H, Maekawa T, Patrikalakis NM, Sachs EM, Cho W. Methods for feature-based design of heterogeneous solids. Comput-Aided Des 2004;36(12)1141-59.   DOI
18 Siu YK, Tan ST. 'Source-based' heterogeneous solid modeling. Comput- Aided Des 2002;34(1)41-55.   DOI
19 Qian X, Dutta D. Feature-based design for heterogeneous objects. Comput-Aided Des 2004;36(12)1263-78.   DOI
20 Samanta K, Koc B. Feature-based design and material blending for free-form heterogeneous object modeling. Comput-Aided Des 2005;37(3)287-305.   DOI
21 Radon J. On the determination of functions from their integral values along certain manifolds. IEEE Trans Med Imaging 1986;5(4)170-6.   DOI
22 Martin T, Cohen E, Kirby RM. Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Comput Aided Geom Des 2009;26(6)648-64.   DOI
23 Fryazinov O, Vilbrandt T, Pasko A. Multi-scale space-variant FRep cellular structures. Comput-Aided Des 2013;45(1)26-34.   DOI
24 Park SM, Crawford RH, Beaman JJ. Functionally gradient material representation by volumetric multi-texturing for solid freeform fabrica-tion. In: Proceedings of the 11th annual solid freeform fabrication symposium; August 2011.
25 Biswas A, Shapiro V, Tsukanov I. Heterogeneous material modeling with distance fields. Comput Aided Geom Des 2004;21(3)215-42.   DOI
26 Wang Y. Periodic surface modeling for computer aided nano design. Comput-Aided Des 2007;39(3)179-89.   DOI
27 Yoo DJ. Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces. Int J Precis Eng Manuf 2012;13(4)527-37.   DOI
28 Pasko A, Fryazinov O, Vilbrandt T, Fayolle PA, Adzhiev V. Procedural function-based modelling of volumetric microstructures. Graph Model 2011;73(5)165-81.   DOI
29 Huang W, Didari S, Wang Y, Harris TA. Generalized periodic surface model and its application in designing fibrous porous media. Eng Comput 2015;32(1)7-36.   DOI
30 Mishnaevsky LL. Automatic voxel-based generation of 3D microstruc-tural FE models and its application to the damage analysis of composites. Mater Sci Eng A 2005;407(1)11-23.   DOI
31 Liu X, Shapiro V. Random heterogeneous materials via texture synthesis. Comput Mater Sci 2015;99:177-89.   DOI
32 Ziou D, Tabbone S. Edge detection techniques: an overview. Int J Pattern Recognit Image Anal 1998;8(4)537-59.
33 Park JM, Murphey YL. Edge detection in grayscale, color, and range images. Wiley Encyclopedia of Computer Science and Engineering; 2008.
34 Kou XY, Tan ST. Heterogeneous object modeling: a review. Comput-Aided Des 2007;39(4)284-301.   DOI
35 Wang Y, Rosen DW. Multiscale heterogeneous modeling with surface-lets. Comput-Aided Des Appl 2010;7(5)759-76.   DOI
36 Huang W. Surfacelet based heterogeneous materials modeling. School of Mechanical Engineering, Georgia Institute of Technology; 2014.
37 Huang W, Wang Y, Rosen DW. Inverse surfacelet transform for image reconstruction with constrained-conjugate gradient methods. J Comput Inf Sci Eng 2014;14(2)021005.   DOI
38 Bhashyam S, Shin KH, Dutta D. An integrated CAD system for design of heterogeneous objects. Rapid Prototyp J 2000;6(2)119-35.   DOI
39 Niezgoda SR, Kalidindi SR, Hu X, Cingara GA, Wilkinson DS, Jain M, Wu P, Mishra RK, Arafin M, Szpunar J. Applications of the phase-coded generalized hough transform to feature detection, analysis, and segmenta-tion of digital microstructures. Comput Mater Contin 2010;14(2)79-98.
40 Rosen DW, Jeong N, Wang Y. A method for reverse engineering of material microstructure for heterogeneous CAD. Comput-Aided Des 2013;45(7)1068-78.   DOI