• 제목/요약/키워드: Three-Dimensional CFD

검색결과 513건 처리시간 0.03초

Cause of Cavitation Instabilities in Three Dimensional Inducer

  • Kang, Dong-Hyuk;Yonezawa, Koichi;Horiguchi, Hironori;Kawata, Yutaka;Tsujimoto, Yoshinobu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제2권3호
    • /
    • pp.206-214
    • /
    • 2009
  • Alternate blade cavitation, rotating cavitation and cavitation surge in rocket turbopump inducers were simulated by a three dimensional commercial CFD code. In order to clarify the cause of cavitation instabilities, the velocity disturbance caused by cavitation was obtained by subtracting the velocity vector under non-cavitating condition from that under cavitating condition. It was found that there exists a disturbance flow towards the trailing edge of the tip cavity. This flow has an axial flow component towards downstream which reduces the incidence angle to the next blade. It was found that all of the cavitation instabilities start to occur when this flow starts to interact with the leading edge of the next blade. The existence of the disturbance flow was validated by experiments.

SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석 (Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine)

  • 김영남;이경환
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

다단 축류터빈 공력설계 및 공력성능 향상기법 (Design Strategies for Multi-Stage Axial Turbines)

  • 강영석;이동호;차봉준;양수석
    • 한국유체기계학회 논문집
    • /
    • 제17권5호
    • /
    • pp.78-82
    • /
    • 2014
  • This paper describes a brief aerodynamic design procedure of multi-stage axial turbine. The design procedure was established including one dimensional scratch design, through flow analysis with empirical correlations, two dimensional airfoil design and three dimensional airfoil stacking. Detailed aerodynamic performance assessment was done with full three dimensional CFD method at the design and off design conditions to construct turbine performance map. With the present method, aerodynamic design procedure of 1st and 2nd stages of high pressure turbine for 10,000lbf class turbofan engine was introduced.

3차원 CFD 시뮬레이션을 활용한 고분자전해질 연료전지 스택의 매니폴드 크기 최적화 (Optimal Sizing of the Manifolds in a PEM Fuel Cell Stack using Three-Dimensional CFD Simulations)

  • 정지훈;한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.386-392
    • /
    • 2013
  • Polymer electrolyte membrane (PEM) fuel cell stacks are constructed by stacking several to hundreds of unit cells depending on their power outputs required. Fuel and oxidant are distributed to each cell of a stack through so-called manifolds during its operation. In designing a stack, if the manifold sizes are too small, the fuel and oxidant would be maldistributed among the cells. On the contrary, the volume of the stack would be too large if the manifolds are oversized. In this study, we present a three-dimensional computational fluid dynamics (CFD) model with a geometrically simplified flow-field to optimize the size of the manifolds of a stack. The flow-field of the stack was simplified as a straight channel filled with porous media to reduce the number of computational meshes required for CFD simulations. Using the CFD model, we determined the size of the oxidant manifold of a 30 kW-class PEM fuel cell stack that comprises 99 cells. The stack with the optimal manifold size showed a quite uniform distribution of the cell voltages across the entire cells.

전향 원심 송풍기의 3 차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.174-180
    • /
    • 1998
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates are used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady state and incompressible. This numerical work is performed with commercial CFD-ACE code developed by CFD Research Corporation, and the results are compared wi th the experimental data

  • PDF

흡기밸브 형상에 따른 3차원 유동특성 해석 (Three-dimensional Analysis of Flow Characteristics for Intake Valve Design)

  • 김득상;이상진;조용석;엄인용
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.1-6
    • /
    • 2003
  • Steady flow bench test is a practical, powerful and widely used in most engine manufacturers to give a design concept of a new engine. In order to use steady data as a performance index, it is necessary to build some database, which can correlate the port characteristics with engine data. However, it is very difficult to investigate all port shapes with experimental tools. The steady flow scheme is relatively simple and its results are bulk ones such as flow rate and momentum of flow. Therefore a CFD code can be easily applied to the port evaluation. In this study, the steady flow test was simulated through three-dimensional analysis on intake port design for comparing with experimental data and confirming the feasibility of applying analytic method . for this purpose, the effect of valve curvature on flow rate was estimated by a CFD code. Numerical results were compared with those of real steady flow tests. As a result, the results of 3-D analysis were almost consistent with experimental data.

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

3 차원 유체역학 집속에 대한 채널 형상 및 유동 조건의 매개변수 연구 (Effects of Geometric and Flow Conditions on 3-dimensional Hydrodynamic Focusing)

  • 한경섭;김동성
    • 대한기계학회논문집B
    • /
    • 제34권1호
    • /
    • pp.61-66
    • /
    • 2010
  • 최근 본 연구그룹은 국소적인 종횡비 증가를 기반으로 수평 분리벽 없이 검체의 3 차원 집속을 구현하는 3 차원 유체역학 집속 미세유체 장치(3D-HFMD)를 제안한 바 있다. 본 논문에서는, 다양한 형상 및 유동 조건에 따른 3D-HFMD 의 3 차원 유체역학 집속 거동 영향에 대한 연구를 수행하였다. 이에 3 차원 전산유체역학(CFD) 시뮬레이션을 통해, 형상 및 유동 조건 변화에 대한 기존의 미세유체 장치와 본 연구 그룹이 제안한 3D-HFMD의 3 차원 유체역학 집속의 매개변수 연구를 수행하였다. 수행된 CFD 시뮬레이션 결과를 바탕으로 3 차원 집속을 위한 채널 형상 디자인 및 유동 조건을 제안하였다.

스크램제트 2차원 모델의 전산해석을 이용한 3차원 비행체의 공력 모델 개발 (Aerodynamic Model Development for Three-dimensional Scramjet Model Based on Two-dimensional CFD Analysis)

  • 한송이;신호철;박수형
    • 한국추진공학회지
    • /
    • 제24권5호
    • /
    • pp.65-76
    • /
    • 2020
  • 3차원 스크램제트 모델의 설계과정에 있어 3차원 전산해석은 2차원 해석에 비해 상대적으로 복잡한 격자 구성과 많은 해석 시간을 요구한다. 때문에 다양한 조건에서의 3차원 모델의 성능을 확인하는 것은 쉽지 않은 일이다. 따라서 본 연구에서는 2차원 스크램제트 비행체 모델의 전산해석 결과와 비점성 초음속 선형화 이론을 기반으로 2차원 모델의 비행 조건에 따른 공력계수 및 흡입구 질량 포획률 관계식을 도출하였다. 도출된 2차원 성능 관계식과 함께 최소한의 3차원 해석을 수행하여 3차원 스크램제트 모델의 공력 계수와 흡입구 질량 포획률 관계식을 이끌어내었다. 또한 추가적인 3차원 계산을 통해 확장된 3차원 관계식들의 공력 정확도를 검증하였다.

알파인 스키 활강 선수에 작용하는 공기 저항 예측 (CFD PREDICTION OF AERODYNAMIC DRAG ACTING ON ALPINE DOWNHILL SKIER)

  • 김종수;조태수;안형택
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.71-76
    • /
    • 2016
  • In speed skiing, aerodynamic forces play an important role in determining performance of the skier. To predict aerodynamic effects of the posture of the skier on alpine downhill skiing, we constructed equation of motion of the skier and performed the corresponding CFD simulations. Comparing drag and lift of three different skier postures, it has been shown that drag decreases significantly by tucking upper body to lower body and stretching arms forward. Also, aerodynamic lift which worked as downforce in standing posture worked upward in tuck posture, reducing friction force between snow and ski. This indicates that tuck posture have advantages over standing posture in dual mechanism, namely by reducing drag and also increasing lift. By this two-dimensional initial study we could reveal the general tendency of the aerodynamic force over the skier's body. This study not only provides a theoretical foundation for the athletes to understand the aerodynamic effects of skier postures but also shed a light on towards more accurate and rational three-dimensional CFD simulation of skiers in the near future study.