DOI QR코드

DOI QR Code

Effects of Geometric and Flow Conditions on 3-dimensional Hydrodynamic Focusing

3 차원 유체역학 집속에 대한 채널 형상 및 유동 조건의 매개변수 연구

  • Han, Kyung-Sup (School of Mechanical Engineering, Chung-Ang University) ;
  • Kim, Dong-Sung (School of Mechanical Engineering, Chung-Ang University)
  • 한경섭 (중앙대학교 기계공학부) ;
  • 김동성 (중앙대학교 기계공학부)
  • Published : 2010.01.01

Abstract

In our previous work, 3-dimensional hydrodynamic focusing microfluidic device (3D-HFMD) has been developed with the help of locally increased aspect ratio of thickness to width without any horizontal separation wall. In this study, we have investigated 3-dimensional hydrodynamic focusing behaviors inside the 3D-HFMD according to the various geometric and flow conditions. The parametric study has been extensively carried out for the effects of geometric and flow conditions on 3-dimensional hydrodynamic focusing with both 3D-HFMD and previous microfluidic device design based on three-dimensional computational fluid dynamics (CFD) simulations. The CFD simulations suggested the proper design window of channel geometry and flow conditions.

최근 본 연구그룹은 국소적인 종횡비 증가를 기반으로 수평 분리벽 없이 검체의 3 차원 집속을 구현하는 3 차원 유체역학 집속 미세유체 장치(3D-HFMD)를 제안한 바 있다. 본 논문에서는, 다양한 형상 및 유동 조건에 따른 3D-HFMD 의 3 차원 유체역학 집속 거동 영향에 대한 연구를 수행하였다. 이에 3 차원 전산유체역학(CFD) 시뮬레이션을 통해, 형상 및 유동 조건 변화에 대한 기존의 미세유체 장치와 본 연구 그룹이 제안한 3D-HFMD의 3 차원 유체역학 집속의 매개변수 연구를 수행하였다. 수행된 CFD 시뮬레이션 결과를 바탕으로 3 차원 집속을 위한 채널 형상 디자인 및 유동 조건을 제안하였다.

Keywords

References

  1. Dittrich, P. S. and Schwille, P., 2003, “An Integrated Microfluidic System for Reaction, High Sensitivity Detection and Sorting of Fluorescent Cells and Particles,” Anal. Chem., Vol. 75, pp. 5767-5774 https://doi.org/10.1021/ac034568c
  2. de Mello, A. J. and Edel, J. B., 2007, “Hydrodynamic Focusing in Microstructures: Improved Detection Efficiencies in Subfemtoliter Probe Volumes,” J. Appl. Phys., Vol. 101, pp. 084903 https://doi.org/10.1063/1.2721752
  3. Takayama, S., Ostuni, E., LeDuc, P., Naruse, K., Ingber, D. E. and Whitesides, G. M., 2001, “Laminar Flows: Subcellular Positioning of Small Molecules,” Vol. 411, pp. 1016 https://doi.org/10.1038/35082637
  4. Knight, J. B., Vishwanath, A., Brody, J. P. and Austin, R. H., 1998, “Hydrodynamic Focusing on a Silicon Chip: Mixing Nanoliters in Microseconds,” Phys. Rev. Lett., Vol. 80, pp. 3863-3866 https://doi.org/10.1103/PhysRevLett.80.3863
  5. Mao, X., Waldeisen, J. R. and Huang, T. J., 2007, “Microfluidic Drifting - Implementing Three- Dimensional Hydrodynamic Focusing with a Single-Layer Planar Microfluidic Device,” Lab Chip, Vol. 7, pp. 1260-1262 https://doi.org/10.1039/b711155j
  6. Chang, C.-C., Huang, Z.-X. and Yang, R.-J., 2007, “Three-Dimensional Hydrodynamic Focusing in Two- Layer Polydimethylsiloxane (PDMS) Microchannels,” J. Micromech. Microeng., Vol. 17, pp. 1479-1486 https://doi.org/10.1088/0960-1317/17/8/009
  7. Kim, D. S., Kim, D. S., Yang, W. and Han, K., 2009, “An Efficient 3-Dimensional Hydrodynamic Focusing Microfluidic Device by means of Locally Increased Aspect Ratio,” Microelectron. Eng., Vol. 86, pp.1343-1346 https://doi.org/10.1016/j.mee.2009.01.017
  8. Kim, D. S., Lee, S. H., Kwon, T. H. and Ahn, C. H., 2005, “A Serpentine Laminating Micromixer Combining Splitting/Recombination and Advection,” Lab Chip, Vol. 5, pp. 739-747 https://doi.org/10.1039/b418314b
  9. Park, J. M., Kim, D. S., Kang, T. G. and Kwon, T. H., 2008, “Improved Serpentine Laminating Micromixer with Enhanced Local Advection,” Microfluid. Nanofluid., Vol. 4, pp. 513-523 https://doi.org/10.1007/s10404-007-0208-x
  10. Munson, B. R., Young, D. F. and Okiishi, T. H., 1998, Fundamentals of Fluid Mechanics (New York: Wiley)