• Title/Summary/Keyword: Third-order equation

Search Result 290, Processing Time 0.025 seconds

THIRD ORDER THREE POINT FUZZY BOUNDARY VALUE PROBLEM UNDER GENERALIZED DIFFERENTIABILITY

  • Prakash, P.;Uthirasamy, N.;Priya, G. Sudha
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.791-805
    • /
    • 2014
  • In this article, we investigate third order three-point fuzzy boundary value problem to using a generalized differentiability concept. We present the new concept of solution of third order three-point fuzzy boundary value problem. Some illustrative examples are provided.

EFFICIENT NUMERICAL METHODS FOR THE KDV EQUATION

  • Kim, Mi-Young;Choi, Young-Kwang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.291-306
    • /
    • 2011
  • We consider the second order Strang splitting method to approximate the solution to the KdV equation. The model equation is split into three sets of initial value problems containing convection and dispersal terms separately. TVD MUSCL or MUSCL scheme is applied to approximate the convection term and the second order centered difference method to approximate the dispersal term. In time stepping, explicit third order Runge-Kutta method is used to the equation containing convection term and implicit Crank-Nicolson method to the equation containing dispersal term to reduce the CFL restriction. Several numerical examples of weakly and strongly dispersive problems, which produce solitons or dispersive shock waves, or may show instabilities of the solution, are presented.

THE EXACT SOLUTION OF THE GENERALIZED RIEMANN PROBLEM IN THE CURVED GEOMETRIES

  • Kim, Ju-Hong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.2
    • /
    • pp.391-408
    • /
    • 2000
  • In the curved geometries, from the solution of the classical Riemann problem in the plane, the asymptotic solutions of the compressible Euler equation are presented. The explicit formulae are derived for the third order approximation of the generalized Riemann problem form the conventional setting of a planar shock-interface interaction.

BEHAVIOR OF SOLUTIONS OF A RATIONAL THIRD ORDER DIFFERENCE EQUATION

  • ABO-ZEID, R.
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.1-12
    • /
    • 2020
  • In this paper, we solve the difference equation $x_{n+1}={\frac{x_nx_{n-2}}{ax_n-bx_{n-2}}}$, n = 0, 1, …, where a and b are positive real numbers and the initial values x-2, x-1 and x0 are real numbers. We also find invariant sets and discuss the global behavior of the solutions of aforementioned equation.

AN OVERLAPPING SCHWARZ METHOD FOR SINGULARLY PERTURBED THIRD ORDER CONVECTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.135-154
    • /
    • 2018
  • In this paper, an almost second order overlapping Schwarz method for singularly perturbed third order convection-diffusion type problem is constructed. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region we use the combination of classical finite difference scheme and central finite difference scheme on a uniform mesh while on the non-layer region we use the midpoint difference scheme on a uniform mesh. It is shown that the numerical approximations which converge in the maximum norm to the exact solution. We proved that, when appropriate subdomains are used, the method produces convergence of second order. Furthermore, it is shown that, two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantages of this method used with the proposed scheme are it reduce iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.

THREE POINT BOUNDARY VALUE PROBLEMS FOR THIRD ORDER FUZZY DIFFERENTIAL EQUATIONS

  • Murty, M.S.N.;Kumar, G. Suresh
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.101-110
    • /
    • 2006
  • In this paper, we develop existence and uniqueness criteria to certain class of three point boundary value problems associated with third order nonlinear fuzzy differential equations, with the help of Green's functions and contraction mapping principle.

  • PDF