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ABSTRACT. We consider the second order Strang splitting method to approximate the solution
to the KdV equation. The model equation is split into three sets of initial value problems
containing convection and dispersal terms separately. TVD MUSCL or MUSCL scheme is
applied to approximate the convection term and the second order centered difference method
to approximate the dispersal term. In time stepping, explicit third order Runge-Kutta method
is used to the equation containing convection term and implicit Crank-Nicolson method to the
equation containing dispersal term to reduce the CFL restriction. Several numerical examples
of weakly and strongly dispersive problems, which produce solitons or dispersive shock waves,
or may show instabilities of the solution, are presented.

1. INTRODUCTION

The deep water wave has to be considered to design harbor structure in coastal region. As
waves enter into a region of shallow water, they are transformed by shoaling, refraction, diffrac-
tion, reflection and they affect to the harbor structure. The development of wave numerical
model has to be preceded to use the deep water wave height for designing harbor structure in
coastal region.

On the other hand, the nonlinearity and dispersion have to be contained in the governing
equation to simulate deep water wave and wave transformation in shallow water. The sim-
plest equation to simulate both wave nonlinearity and dispersion is Korteweg de Vries (KdV)
equation in one dimensional space, which is given as follows:

3
%Jragiu)ﬂ%:o, t>0, z€R, (1.1)
u(z,0) = up(x), x €R,
2

where u denotes the solution, f(u) = au
BV.

, o and € are constants, and ug is a given function in
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In this paper, we study the numerical methods to approximate the solution to (1.1). We
consider weakly and strongly dispersive problems. We are particularly interested in high or-
der approximations in space and time. The solution to the weakly dispersive problems may
be physically oscillatory. Sometimes instability of the solution occurs and/or solitons are pro-
duced. In the strongly dispersive problems, a soliton can propagate with balance between
non-linearity of the convection and high order dispersion as time evolves.

In time integration, the explicit scheme for the dispersal equation requires a restrictive CFL
condition. In order to loose such a restrictive condition, we consider the second order Strang
splitting method which treats the convective term and dispersal term separately. More precisely,
we apply the explicit third order Runge-Kutta method to the nonlinear convection equation and
the implicit Crank-Nicolson method to the third order dispersal equation.

In space discretization, we apply the finite volume method of MUSCL (Monotone Upstream
Central) type to the nonlinear convection equation. When the initial condition is smooth and
the solution is smooth, the MUSCL scheme without TVD (Total variation diminishing) is more
efficient than the TVD MUSCL scheme. When the initial condition is discontinuous, the TVD
MUSCL scheme removes the spurious oscillation.

Most schemes developed so far, for the KAV equations, are FDMs (finite difference methods)
and the methods based on FDM such as narrow box schemes, symplectic and multisymplectic
methods. We refer the readers to [1, 2, 4, 11] and the references cited therein for more details.
High order FVM or FDM combined with high order time discretization may produce instability
in the solution. One of the main concern of this article is to provide a high order scheme in
space and time with relaxed CFL condition.

Very recently, an LDG(local discontinuous Galerkin) method was introduced by Yan and
Shu [11]. There, two auxiliary variables were introduced to approximate the third order disper-
sal term and discontinuous Galerkin (DG) method was applied to the system of the resulting
equation. In time integration, explicit third order Runge-Kutta method [3] was used and very
small time step was used in their approach.

In this paper, we loose the CFL condition. More precisely, we consider a semi-explicit
time stepping by introducing second order Strang splitting. The restrictive CFL condition due
to high order dispersal term is then relaxed only to the convection term. We show that the
resulting numerical solution is stable. By TVD MUSCL, we also remove spurious wiggles
near the discontinuities of the dispersive shock wave.

The organization of the paper is given as follows. In section 2, we introduce the finite
volume method to approximate the Burger’s equation. In section 3, we describe the Strang
splitting and time stepping methods. In section 4, we present some numerical examples of
weakly and strongly dispersive problems, which produce solitons or dispersive shock waves.
Instabilities of the solution may also occur. Finally, in section 5, we give some concluding
remarks.
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2. FINITE VOLUME METHOD

In this section, we consider the following hyperbolic conservation law:

ou  Of(u)

il = —-1< 1

ot + 97 0, t>0, <x <1,

u(z +1,t) = u(z,t), t>0, 2.1
u(z,0) = up(x), —-1<z <1,

where f(u) = au?.

A finite volume discretization to (2.1) is then obtained by taking the integral to (2.1) over
the cell IZ = [Iifl/Qa le/Q].

%ﬂi(t) = _Aix{f<u(1'i+1/27t)) — f(ul@i1/2, 1))}, 2.2)

where Az =z, 1/ —x;_1 /o and u;(t) = A%: fxiijll//; u(zx,t)dz represents cell-averaged value

on the cell I;.
We now integrate (2.2) over [¢", "*1] and apply Euler forward time stepping method to get

At . -

—n+1 _

upth =ap — A_x( Z«LH/Q - fz'nf1/2)v (2.3)
where fﬁrl/2=§ tt:“ f(u(zig12,t))dt is the approximation to the physical flux f(u) of

(2.1) and is called the numerical flux at the cell interface ;1 /5. The numerical flux should be
then determined to obtain the approximate solution in next time step.

Meanwhile, it is well known that solutions of (2.1) may develop discontinuities in finite
time even when the initial data are smooth. A simple class of flux functions f , for which (2.3)
converges, for all £, to the unique entropy solution in L>°(L'(R);[0,T]), as Ax — 0, for any
T > 0, is the class of E schemes. It is clear that this class includes the widely known class of
monotone schemes. One particular monotone scheme is due to Godunov. However F schemes
are at most first order accurate [7] and the first order accurate schemes give poor resolution in
many problems. On the other hand, high order schemes produce spurious oscillations at the
discontinuities of the solution. Theses spurious oscillations will happen in finite difference and
finite element methods [5], finite volume methods [10] without special treatment.

In this paper, we consider TVD schemes which produce oscillation free solutions and high
accuracy. A scheme is called TVD if it satisfies the following:

TV (W) <TV(@W"), Vn,

TV(") = ) lufs —ufl.

1=—00

TVD scheme is thus stable. The readers refer to [6] and [10] for more details on TVD schemes.
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2.1. MUSCL scheme. The MUSCL scheme is a second order accurate extension of Go-
dunov’s method. The first step in MUSCL is the reconstruction of a piecewise linear description
of the solution. In the interval I; the result of this operation is

u"(z,ty) = U + (x — x4)0), 2.4)

where @} is the cell-averaged value and o} is the slope function. If we choose the downwind
slope
n ﬂ?—i—l - ﬂ;n
o = 2 (2.5)
as the slope function, the method reduces to the Lax-Wendroff method.
TVD MUSCL schemes use slope limiters which reduce spurious oscillations at the discon-
tinuities of the solution. In this paper, we consider the MC (monotonized central-difference)

limiter as the slope function:

= ur uy —uy o —ur
ol = minmod | —2—=L minmod( 2 ——=L ), 2 4L L ,
2dx dx dx

sign(a) + sign(b)
2
The next step of the MUSCL is the computation of the numerical flux at the cell interface by
solving the Riemann problem with extrapolated values obtained from the reconstruction. Here
we consider the Godunov scheme and the Roe scheme. In Godunov scheme the numerical flux
at the interface is computed by solving the Riemann problem exactly. The Godunov scheme is
simplified as follows.

minmod(a,b) = min(|al,|b]).

,—Ci"f%”ov = flu(@it1)2,t"))
_ { minue[ui,ui+1] f(u)7 Uq S Ui+1,
maXuE[ui,ui+1] f(u)7 U; > Uj4-1-

In Roe scheme the numerical flux is computed by the approximate Riemann solver, where
the nonlinear term of conservation law is linearized. Roe scheme is simpler than Godunov
scheme and is applied to the system of the conservation law more easily. Roe flux is given as
follows [9]:

thRoe  Jit firn 1 _
z'+o1e/2 - 5 7 §|Uz‘+1/2|(uz‘+1 — u;),
o _ %(Uz + uit1), Ui F Uit1,
/2 Ui, Ui = Uit 1.

It is known that the solution of the TVD MUSCL to (2.1) satisfies the entropy inequality with
the approximate entropy flux (1.20) in [8]. The solution of the TVD MUSCL thus converges
to the unique solution of (2.1) provided the initial data is in BV'.

It is also known [8] that TVD MUSCL and MUSCL schemes are second order accurate
provided the solution of (2.1) is smooth.
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3. SPLITTING METHOD

The CFL condition to obtain a stable approximate solution to (1.1) by an explicit method
is very restrictive in general. The CFL condition in (1.1) by a finite difference method, for
example, is given by [1]

At < Afﬂ/|: ‘ |2 +2aumax|i|

In [11], small time step is also needed to the KdV equations. In this paper we consider second
order accurate Strang splitting method to avoid small time step restriction due to the third order
dispersal term. The convection and the third order dispersal terms are split into a pair of initial
value problems. The split form is then given by the following:

PDE: & 4 8lu _ g flu) = au I
’ — 3.1
IC: u(J: t”) = “ S
du By
PDE o et =0 }=>a”+2 (32)
au of(w) _ _

The result of (3.1)-(3.3) can be expressed as the form of

umtl = C(%At)DmC(%At) (u™).
One may interpret C' (340) as the solution operator for (3.1) and (3.3) with time step QAt and
DA% as the solution operator for (3.2) with time step At. We apply the MUSCL scheme to
approximate the flux term of (3.1) and (3.3). For time stepping, we apply the explicit third
order Runge-Kutta method [3]:

uV) =™ + AtL(u™),
@ _3,m L0 Ly,
u® = u + T + 1 tL(u'"), (3.4)
1 2 2
"t = §u" + gu(g) + gAtL(u(Q)),

where L(u) = — f(u),.

For the approximation of (3.2), we use the second order centered difference method in space
and Crank-Nicolson method in time, which is implicit and unconditionally stable. The scheme
for (3.2) is then expressed as follows:

—n+l1 —n —=n+1 _ o—n+1 —n+1 _ —n+1
u; ' — Uy 1(_6){“z+2 Uy + 20T — Ty

2Az3

o = 2Uy 22U, U
2Ax3

Al 3 (3.5)
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or it is rewritten as

ndl | pondl | okl gondl il L
augty +bup ) +cup T A dugy - euy = FY,oi=1,---, ncells, (3.6)
At At — o a7 o
wherea = — ;55,0 = 55,3, ¢ =1,d=—b, e = —a, F]' = euj’ o +duj’_ | + cuj +buy,; +

auy, 5, and ncells denotes the number of cells.

By considering a periodic boundary condition, we thus obtain the matrix form of
n+1

cde 00 - 0 0 a b Uq F7
becde 0 - 0 0 a ug ! Fy
abecde 0 0 - 00 uptt Fy
0 abecd e 0 - 00 ul Fy
00000 a b ¢ e uttl F is—o
e 0000 O a b c d el Fens—1
d e 000 0 0 a b ¢ Z:re%ls F:LLcells

n. _,n
where U1 = Upeells—17

We apply the ILU decomposition to solve the matrix equation. The matrix is then decom-
posed to L. and U part before the time stepping because the matrix is constant in time and it
does not take much time to solve matrix equation.

n__ ,mn n _n n _.n
Uy = Upcellsr Uneells+1 = U1> and uncells+2 = Uy.

4. NUMERICAL RESULTS

In this section we present several numerical examples to see the possibility of the appli-
cation to diverse problems. We study the behavior of the numerical solutions to weakly and
strongly dispersive problems, instabilities of the solutions, and the efficiency for the long time
computation of the solitons. We compare the results with ones of [11], [1], and [4]. We use
smooth initial conditions in Examples 4.1 - 4.6, while we use a discontinuous initial condition
in Example 4.7. We apply both Godunov and Roe schemes in Example 4.7, while we apply
Godunov scheme in Examples 4.1 - 4.6.

In the approximation of the convection term, we apply the second order accurate MUSCL
scheme when the initial condition is smooth and TVD MUSCL when the initial condition is
discontinuous. In the approximation of the dispersal term, we apply the second order centered
difference method. On the other hand, Yan and Shu [11] applied LDG method with P? element.
The number of cell required to model the wave dispersion in Example 4.1 is larger than the
one of Yan and Shu [11] due to the lower order approximation. However, the number of cell
required in the computation of the solution to problem of the zero dispersion limit in Example
4.2, is less than the one of Yan and Shu [11]. The third order dispersal term and the first order
convection terms are split by Strang splitting method. Requirement of the time step size, which
is restrictive in Yan and Shu [11], can be relaxed by using Crank-Nicolson scheme to (3.2).

Throughout Examples 4.1 - 4.3, we present numerical results of the soliton propagation.
Soliton propagates with balance between nonlinearity and dispersion. Thus precise computa-
tion is needed on the evaluation of the nonlinear convection and the dispersion terms.
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Az Emaz Crmasz
0.08 0.315492163 1.649529193
0.04 0.100561284 2.042278843
0.02 0.024414263 2.023482311
0.01 0.006005024 2.040861876
0.005 0.001459332 1.982782879
0.0025 0.000369213 1.993765419

TABLE 1. Convergence estimates for single soliton example.

Example 4.1. In this example, we solve (2.1) with initial condition of single soliton:
uo(z) = 3esech? (k(x — xg)), 4.1)
c=0.3, 20=0.5, k= (1/2)\/(c/e), e =5x 1074,

with o = 0.5 1n (1.1). The soliton is located at x=0.5 at =0 with amplitude of 0.9. We impose
periodic boundary condition. We see that the exact solution is given [2] by
u(x,t) = 3csech? (k(x — ct — xp)).

The computation is done over 0<x<2 and 0<¢ <3 with Az = 0.01 (and thus 200 cells) and
At = 0.02. The results are presented in Figure 1. The soliton propagates while maintaining
the initial amplitude and the velocity c as seen in Figure 1.

We also compute the order of convergence of the approximate solution by L, norm:

BErax(Az) = mff( \uf(t) —ui(t)], (t=0.5),
En?ax(Ax)

oo log Frmax(8z/2)
max — log 2

where ufl and u; denote numerical and exact solutions, respectively. Convergence results are
given in Table 1. We see, from Table 1, that the numerical solution converges with the rate of
order 2.

Example 4.2. In this example, we study the double soliton collision problem. The
initial condition is given by
ug(x) = 3crsech®(ki(z — x1)) + 3casech? (ka(z — x2)),
C1 = 03, Cy = 0]., T = 04, To = 08,

ki = (1/2)\/(ci/e), (for i=1,2), ¢ =4.84 x 1074
with &« = 0.5 in (1.1). The soliton is located at x=0.4 and x=0.8 at =0 with the amplitudes of
0.9 and 0.3, respectively. Periodic boundary condition is imposed. The computation is done
over 0<x<2 and 0<r<4 with Az=0.01 (and thus 200 cells) and A¢=0.02. The results are
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X

FIGURE 1. Comparison of spatial profile of solitons : snapshots of solution
profile between numerical solution and analytical solution.

presented in Figure 2. Solitons pass through each other and the shape and the velocity of each
soliton are kept. The phase lag gradually develops between bigger soliton and smaller soliton
as t evolves after two solitons collide each other at r=1. These solitons retain the their shapes
after interaction.

Example 4.3. In this example, we study the triple soliton splitting problem. The initial
condition is given by
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FIGURE 2. Snapshots of double soliton collision case.

with « = 0.5 in (1.1). The soliton is located at x=1.0. Periodic boundary condition is im-
posed. The computation is done over 0<x<3 and 0<#<4 with Az=0.01 (and thus 300 cells)
and At=0.01. The results are presented Figure 3. The soliton is split into three components
which have their own amplitudes as ¢ evolves. Three solitons propagate while retaining their
amplitudes as seen in Figure 3.

In Example 4.4, we compare the computation with the one of Yan and Shu [11]. Our com-
putation is done with Azx=0.01 and At = 0.02 or At = 0.01 while the computation was done
with Az=0.02 and smaller At in [11]. We here note that their method is third order accurate in
space and time, while our method is second order accurate.
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t=0.0
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0.0 0.4

2.0 2.4 2.8
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0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
X

FIGURE 3. Snapshots of triple soliton splitting case.

Example 4.4. In this example, we study the case of zero dispersion limit. We solve
(1.1) when £ is 10~%, 1075, 1076, and 10~ 7. The initial condition is given by

ug(z) =2 4 0.5sin(27x) 4.2)

with a = 0.5. Periodic boundary condition is imposed. The computation is done over 0<x<1
and 0<r<0.5.

At the beginning, a sine function is placed but physical oscillation or dispersive shock wave
pattern develops for each ¢ as time evolves. The results are presented in Figure 4.
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e=1.0"

e=1.0"°
3.4 T

3.0f

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

e=1.07° e=1.0"7

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
X X

FIGURE 4. Snapshots for each € of Example 4.4.

We compare the computation with the one of [11]. We use 200 cells (Az=0.005) and
At=0.005 for e=10%, 300 cells (Az=0.0033) and At=0.002 for =102, 650 cells (Az=0.0015)
and At=0.000307 for e=10~%, and 1600 cells (Az=0.0006) and At=0.000125 for e=10"",
while Yan and Shu in [11] used P? element with 300 cells for e=10~* and 10~°, 800 cells for
£=1075 and 1700 cells for e=10~". They used much smaller At in all computations due to the
CFL restriction. Our results which are obtained even by lower order schemes, are better. It was
also seen that the maximum value of u at ¢ = 0.5 in [11] is smaller than that of ours given in
Figure 4, when ¢ = 1077,
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FIGURE 5. Numerical solution profile of Example 4.5.

Example 4.5. Inthis example, we study instabilities of the solution to (1.1). The initial
condition is given by
ug(x) = cos(mwx) 4.3)
with o = 0.5 and € = 4.84 x 10~%. Periodic boundary condition is imposed. The computation
is done over <x<2 and 0 < ¢t < 10 with Az=0.0033 (600 cells) and At=0.0015. The results
are presented in Figure 5. At the beginning a cosine function is placed but the solution is
split into solitons by dispersion and they propagate as time evolves. Asher and McLachlan
[1] applied the narrow box scheme and showed rough resolutions. They used Az=0.02 and
At=0.004. Here we use Az=0.01 and At=0.003 to compare the results with [1]. The results
are depicted in Figure 5-6.

Example 4.6. In this example, we study a strongly dispersive problem. We solve (1.1)
with &« = 3 and € = 1. The initial condition is given by

ug(x) = 6sech?(x). 4.4)
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Finite Volume MUSCL scheme result at t=10 Narrow Box scheme result at t=10

25 2.5

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15
X X

FIGURE 6. Comparison with narrow box scheme result on rough grid of Ex-
ample 4.5.

The soliton is located at x=0 and at =0. Periodic boundary condition is imposed. The compu-
tation is done over -20<x<20 and 0<¢<100 with Az=0.03636 (1100 cells) and A¢=0.0001.
The initial soliton is split into two components which have their own amplitude and propagate
as time evolves. The results are presented in Figure 7.

In Example 4.6, Ascher and McLachlan [1] applied the semi-explicit and symplectic method,
while they applied the narrow box scheme in Example 4.5. They used Az=0.05 and A¢=0.001.

Example 4.7. In this example, we study the problem of dispersive shock wave with
discontinuous initial condition. We solve (1.1) with & = 0.5 and ¢ = 1073. The initial
condition is given by

1, =<0,
“(x’o):{ 0, «>0.

The computation is done with Az=0.00625 and At=0.00625. We apply both TVD MUSCL
and MUSCL schemes on the convection term. We also apply both Godunov and Roe schemes
on the numerical flux. The results are similar and only the results of the Roe scheme are
presented in Figures 8 - 9. The approximation of the MUSCL shows spurious wiggles near
the discontinuity of the initial condition. They propagate to the left and are getting smaller
as time evolves. On the other hand, the approximate solution of TVD MUSCL shows no
spurious oscillation. The wavelength of oscillation, leading edge amplitude, and speed of the
approximate solution of the TVD MUSCL agree well with the one of Hoefer et al. [4].
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....... t=0.0---t=40 —t=100.0

FIGURE 7. Numerical solution profile of Example 4.6.

5. CONCLUDING REMARKS

KdV equation shows very diverse behaviors in the solution depending on the values of the
parameters. In weakly dispersive problems, spurious oscillations may occur in the numerical
solutions. In strongly dispersive problems, solitons with their own amplitudes should be pre-
served for a long time. Instability of the solution may occur. Dispersive shock waves may
also develop under discontinuous initial conditions. Due to high order dispersal term, the KdV
equation usually requires small time step with restricted CFL condition for stability of the nu-
merical solution. For the KdV equation, it is thus important to develop a high order scheme
combined with high order time discretization, which is efficient for long time computation and
for the computation requiring small time step size.

In this paper, Strang splitting method is applied to solve the KdV equations. The convec-
tion and the dispersal terms are split into a pair of initial value problems. The Crank-Nicolson
scheme is applied to the equation containing third order derivative term to avoid CFL restric-
tion. The MUSCL and the TVD MUSCL schemes are applied to the equation containing
convection term.

Computations through Examples 4.1 - 4.6 show that the CFL restrictions are now relaxed
in the methods: In Examples 4.1-4.3, the maximum of At/Ax is two. In Example 4.4, larger
At and Az than those of [11] are applicable. In Example 4.5, the maximum of A¢/Az is 0.3,
while the maximum of At/Ax in [1]is 0.2.
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2.0

---1t=0.0
1.5F t=0.5 7

"v'vv'lV““l"

oo e

~10 -5 0 5
FIGURE 8. MUSCL scheme results of dispersive shock wave problem

In Example 4.7, TVD MUSCL and MUSCL schemes are applied to the dispersive shock
wave problem. The approximate solution of the MUSCL scheme shows spurious wiggles. By
TVD MUSCL we remove spurious wiggles. Resulting numerical solution agrees well with [4]
in wavelength of oscillation, leading edge amplitude, and speed of the solution.

We expect that, in the approximation of the wave equations in Oceanography, non-physical
oscillations which is developed at discontinuous depth, can be removed without restriction of
small time step due to the high order dispersion term. Further research in this direction is an
our ongoing work.
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