• Title/Summary/Keyword: Thin oxide

Search Result 2,631, Processing Time 0.026 seconds

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

PREPARATION AND CHARACTERIZATION ON THIN FILMS OF DOPED IRON OXIDE PHOTOSEMICONDUCTIVE ELECTRODES. (얇은막 산화철 광반도성 전극의 제조와 그 특성)

  • Kim, Il-Kwang;Kim, Yon-Geun;Park, Tae-Young;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.104-108
    • /
    • 1993
  • Thin films of MgO-doped and CaO-doped iron oxide were prepared y spray pyrolysis. The films were characterized b X-ray diffraction, scanning electron microscopy and voltammetric techniques. The photoelectrochemical behavior of thin film electrodes depended greatly on the doping level, sintering temperature, substrate temperature and added photosensitizing compounds in solution, showed p-type photoelectrochemical behavior, while the CaO-doped iron oxide thin films prepared at low temperature showed n-type photoelectrochemical behavior. This characteristic change was interpreted in terms of the surface structure change of the thin films and doping effect of metal oxide.

  • PDF

Formation of nickel oxide thin film and analysis of its electrical properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn;Lee, Seon-Gil;Park, Yong-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.52-55
    • /
    • 2005
  • Ni oxide thin films with thermal sensitivity superior to Pt and Ni thin films were formed through annealing treatment after Ni thin films were deposited by a r.f. magnetron sputtering method. Resistivity values of Ni oxide thin films were in the range of $10.5{\mu}{\Omega}cm$ to $2.84{\times}10^{4}{\mu}{\Omega}cm$ according to the degree of Ni oxidation. Also temperature coefficient of resistance(TCR) values of Ni oxide thin films depended on the degree of Ni oxidation from 2,188 ppm/$^{\circ}C$ to 5,630 ppm/$^{\circ}C$ in the temperature range of $0{\sim}150^{\circ}C$. Because of the high linear TCR and resistivity characteristics, Ni oxide thin films exhibit much higher sensitivity to flow and temperature changes than pure Ni thin films and Pt thin films.

Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method (스핀코팅법으로 제작한 산화구리 박막의 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.171-176
    • /
    • 2015
  • We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensing measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $100^{\circ}C$. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from $60^{\circ}C$ to $200^{\circ}C$. It is supposed from these results that the p-type oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.

Zinc Oxide Nanostructured Thin Film as an Efficient Photoanode for Photoelectrochemical Water Oxidation

  • Park, Jong-Hyun;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.30 no.9
    • /
    • pp.441-446
    • /
    • 2020
  • Synthesizing nanostructured thin films of oxide semiconductors is a promising approach to fabricate highly efficient photoelectrodes for hydrogen production via photoelectrochemical (PEC) water splitting. In this work, we investigate the feasibility as an efficient photoanode for PEC water oxidation of zinc oxide (ZnO) nanostructured thin films synthesized via a simple method combined with sputtering Zn metallic films on a fluorine-doped tin oxide (FTO) coated glass substrate and subsequent thermal oxidation of the sputtered Zn metallic films in dry air. Characterization of the structural, optical, and PEC properties of the ZnO nanostructured thin film synthesized at varying Zn sputtering powers reveals that we can obtain an optimum ZnO nanostructured thin film as PEC photoanode at a sputtering power of 40 W. The photocurrent density and optimal photocurrent conversion efficiency for the optimum ZnO nanostructured thin film photoanode are found to be 0.1 mA/㎠ and 0.51 %, respectively, at a potential of 0.72 V vs. RHE. Our results illustrate that the ZnO nanostructured thin film has promising potential as an efficient photoanode for PEC water splitting.

Growth of Copper Oxide Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method (초음파 분무 열분해법을 이용한 구리산화물 박막 성장)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.516-521
    • /
    • 2018
  • Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than $350^{\circ}C$, three-dimensional structures consisting of cube-shaped $Cu_2O$ are formed, while spherical small particles of the CuO phase are formed at a temperature higher than $400^{\circ}C$ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional $Cu_2O$ thin films are preferentially deposited at a temperature less than $300^{\circ}C$, and the CuO thin film is formed even at a temperature less than $350^{\circ}C$. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.

A Study on Surface Growth Direction and Particle Shape According to the Amount of Oxygen and Deposition Parameters

  • Jeong, Jin;Kim, Seung Hee
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.209-211
    • /
    • 2018
  • A zinc oxide thin film doped with aluminum was deposited by RF sputtering. The deposition temperature of the sputter chamber was kept constant at $350^{\circ}C$, the power supplied to the chamber was 75 W, the oxygen flow rate was changed to 10 sccm and 20 sccm, and the thin film deposition time was changed to 120 and 180 minutes. The structures of the deposited zinc oxide thin films were analyzed by van der Waals method using an X-ray diffractometer. As a result of X-ray diffraction, the amount of oxygen supplied to the zinc oxide thin film increased, and the surface growth of the (002), (400), (110), and (103) planes showed a change with increasing deposition time. Moreover, as the amount of oxygen supplied to the zinc oxide thin film increased, their shape was observed to be coarse, and the thin film' s particles shape was correlated with the oxygen chemical defect introduced.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

A Study on the Electrical Characteristics of Ultra Thin Gate Oxide

  • Eom, Gum-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.169-172
    • /
    • 2004
  • Deep sub-micron device required to get the superior ultra thin gate oxide characteristics. In this research, I will recommend a novel shallow trench isolation structure(STI) for thin gate oxide and a $N_2$O gate oxide 30 $\AA$ by NO ambient process. The local oxidation of silicon(LOCOS) isolation has been replaced by the shallow trench isolation which has less encroachment into the active device area. Also for $N_2$O gate oxide 30 $\AA$, ultra thin gate oxide 30 $\AA$ was formed by using the $N_2$O gate oxide formation method on STI structure and LOCOS structure. For the metal electrode and junction, TiSi$_2$ process was performed by RTP annealing at 850 $^{\circ}C$ for 29 sec. In the viewpoints of the physical characteristics of MOS capacitor, STI structure was confirmed by SEM. STI structure was expected to minimize the oxide loss at the channel edge. Also, STI structure is considered to decrease the threshold voltage, result in a lower Ti/TiN resistance( Ω /cont.) and higher capacitance-gate voltage(C- V) that made the STI structure more effective. In terms of the TDDB(sec) characteristics, the STI structure showed the stable value of 25 % ~ 90 % more than 55 sec. In brief, analysis of the ultra thin gate oxide 30 $\AA$ proved that STI isolation structure and salicidation process presented in this study. I could achieve improved electrical characteristics and reliability for deep submicron devices with 30 $\AA$ $N_2$O gate oxide.

Epitaxial growth of Tin Oxide thin films deposited by powder sputtering method

  • Baek, Eun-Ha;Kim, So-Jin;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.185.2-185.2
    • /
    • 2015
  • Tin Oxide (SnO2) has been widely investigated as a transparent conducting oxide (TCO) and can be used in optoelectronic devices such as solar cell and flat-panel displays. In addition, it would be applicable to fabricating the wide bandgap semiconductor because of its bandgap of 3.6 eV. There have been concentrated on the improvement of optical properties, such as conductivity and transparency, by doping Indium Oxide and Gallium Oxide. Recently, with development of fabrication techniques, high-qulaity SnO2 epitaxial thin films have been studied and received much attention to produce the electronic devices such as sensor and light-emitting diode. In this study, powder sputtering method was employed to deposit epitaxial thin films on sapphire (0001) substrates. A commercial SnO2 powder was sputtered. The samples were prepared with varying the growth parameters such as gas environment and film thickness. Then, the samples were characterized by using XRD, SEM, AFM, and Raman spectroscopy measurements. The details of physical properties of epitaxial SnO2 thin films will be presented.

  • PDF