Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.9.516

Growth of Copper Oxide Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method  

Han, In Sub (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.9, 2018 , pp. 516-521 More about this Journal
Abstract
Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than $350^{\circ}C$, three-dimensional structures consisting of cube-shaped $Cu_2O$ are formed, while spherical small particles of the CuO phase are formed at a temperature higher than $400^{\circ}C$ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional $Cu_2O$ thin films are preferentially deposited at a temperature less than $300^{\circ}C$, and the CuO thin film is formed even at a temperature less than $350^{\circ}C$. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.
Keywords
copper oxide; band gap energy; oxidation state; spray pyrolysis deposition; thin film;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. H. Lee, S. J. Heo, J. I. Youn, Y. J. Kim, I. K. Kim, K. W. Jang and H. J. Oh, Korean J. Mater. Res., 27, 569 (2017).   DOI
2 A. Chen, H. Long, X. Li, Y. Li, G. Yang and P. Lu, Vacuum, 83, 927 (2009).   DOI
3 G. Papadimitropoulos, N. Vourdas, V. Em. Vamvakas and D. Davazoglou, Thin Solid Films, 515, 2428 (2006).   DOI
4 A. S. Zoolfakar, R. A. Rani, A. J. Morfa, A. P. O'Mullane and K. Kalantar-zadeh, J. Mater. Chem. C, 2, 5247 (2014).   DOI
5 B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, Th Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller and C. Ronning, Phys. Status Solidi B, 249, 1487 (2012).   DOI
6 R. Wick and S. D. Tilley, J. Phys. Chem. C., 119, 26243 (2015).   DOI
7 J. Luo, L. Steier, M.-K. Son, M. Schreier, M. T. Mayer and M. Gratzel, Nano Lett., 16, 1848 (2016).   DOI
8 Y. Yang, D. Xu, Q. Wu and P. Diao, Sci. Rep., 6, 35158 (2016).   DOI
9 M. A. Hossain, R. Al-Gaashani, H. Hamoudi, M. J. Al Marri, I. A. Hussein, A. Belaidi, B. A. Merzougui, F. H. Alharbi and N. Tabet, Mater. Sci. Semicond. Process., 63, 203 (2017).   DOI
10 S. J. Park, H. Kim and D. J. Kim, Korean J. Mater. Res., 24, 19 (2014).   DOI
11 D. K. Cheon, K. J. Ahn and W. Lee, Korean J. Mater. Res., 27, 69 (2017).   DOI
12 C. E. Knapp and C. J. Carmalt, Chem. Soc. Rev., 45, 1036 (2016).   DOI
13 R. J. Jaccodine, J. Electrochem. Soc., 110, 524 (1963).   DOI
14 A. Eskandari, P. Sangpour and M. R. Vaezi, Mater. Chem. Phys., 147, 1204 (2014).   DOI
15 Y. C. Zhang, J. Y. Tang, G. L. Wang, M. Zhang and X. Y. Hu, J. Crystal Growth, 294, 278 (2006).   DOI
16 A. Y. Oral, E. Mensur, M. H. Aslan and E. Basaran, Mater. Chem. Phys., 83, 140 (2004).   DOI
17 J. C. Tauc, Optical Properties of Solids, North-Holland, Amsterdam (1972).
18 M. Y. Lee, S. H. Kim and I. K. Park, Physica B, 500, 4 (2016).   DOI
19 T. Ikenoue, S. Sakamoto and Y. Inui, Jpn. J. Appl. Phys., 53, 05FF06 (2014).   DOI
20 K. Chen, C. J. Chiang and D. Ray, Mater. Lett., 95, 172 (2013).   DOI