Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.4.171

Nitrogen Monoxide Gas Sensing Properties of Copper Oxide Thin Films Fabricated by a Spin Coating Method  

Hwang, Hyeonjeong (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University)
Kim, Hyojin (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University)
Kim, Dojin (Graduate School of Advanced Circuit Substrate Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.25, no.4, 2015 , pp. 171-176 More about this Journal
Abstract
We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensing measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as $100^{\circ}C$. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from $60^{\circ}C$ to $200^{\circ}C$. It is supposed from these results that the p-type oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.
Keywords
oxide semiconductor; gas sensor; CuO; NO gas; spin coating;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Li, H. Schnablegger and S. Mann, Nature, 402, 393 (1999).   DOI
2 G. R. Patzke, F. Krumeich and R. Nesper, Angew. Chem. Int. Ed., 41, 2446 (2002).   DOI
3 A. Chen, H. Long, X. Li, G. Yang and P. Lu, Vacuum, 83, 927 (2009).   DOI   ScienceOn
4 I. M. Watson, M. P. Atwood and T. J. Cumberbatch, Thin Solid Films, 251, 51 (1994).   DOI   ScienceOn
5 K. Kawaguchi, R. Kita, M. Nishiyama and T. Morishita, J. Cryst. Growth, 143, 221 (1994).   DOI   ScienceOn
6 J. F. Pierson, A. Thobor-Keck and A. Billard, Appl. Surf. Sci., 210, 359 (2003).   DOI   ScienceOn
7 H. Y. Bae and G. M. Choi, Sens. Actuators B, 55, 47 (1999).   DOI   ScienceOn
8 D. Jundale, S. Pawar, M. Chougule, P. Godse, S. Patil. B. Raut, S. Sen and V. Patil, J. Sens. Technol,, 1, 36 (2011).   DOI
9 S. C. Naisbitt, K. F. E. Pratt, D. E. Williams and I. P. Parkin, Sens. Actuators B, 114, 969 (2006).   DOI   ScienceOn
10 J. L. Solis and V. Lantto, Sens. Actuators B, 48, 322 (1998).   DOI   ScienceOn
11 S. J. Park, H. Kim and D. Kim, Korean J. Mater. Res., 24, 19 (2014).   DOI   ScienceOn
12 R. W. J. Scott, S. M. Yang, G. Chabanis, N. Coombs, D. E. Williams and G. A. Ozin, Adv. Mater., 13, 1468 (2001).   DOI
13 O. K. Kim, H. Kim and D. Kim, Korean J. Mater. Res., 22, 237 (2012).   DOI   ScienceOn
14 S. Ahlers, G. Muller and Th. Doll, Encyclopedia of Sensors, p. 413, ed. by C. A. Grimes, E. C. Dickey and M. V. Pishko, American Scientific Publishers (2006).
15 D. Sauter, U. Weimar, G. Noetzel, J. Mitrovics and W. Gopel, Sens. Actuators B, 69, 1 (2000).   DOI   ScienceOn
16 G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Crit. Rev. Solid State Mater. Sci., 29, 111 (2004).   DOI   ScienceOn
17 T. Seiyama, A. Kato, K. Fujishi and M. Nagatani, Anal. Chem., 34, 1502 (1962).   DOI
18 G. F. Fine, L. M. Cavanagh, A. Afonja and R. Bibions, Sensors, 10, 5469 (2010).   DOI
19 Y. Min, H. L. Tuller, S. Palzer, J. Wollenstein and H. Bottner, Sens. Actuators B, 93, 435 (2003).   DOI   ScienceOn
20 T. Gao and T. H. Wang, Appl. Phys. A, 80, 1451 (2005).   DOI
21 X. G. Zheng, K. Taniguchi, A. Takahashi, Y. Lie and C. N. Xu, Appl. Phys. Lett., 85, 1728 (2004).   DOI   ScienceOn
22 David Jiles, Introduction to the Electronic Properties of Materials, Chapman & Hall, London, UK, 1993.