• Title/Summary/Keyword: Thin metal structure

Search Result 582, Processing Time 0.026 seconds

Study on Lowering of the Polarization in SiOC Thin FIlms by Post Annealing (SiOC 박막에서 열처리에 의한 분극의 감쇄현상에 관한 연구)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1747-1752
    • /
    • 2012
  • The SiOC film of carbon centered system was prepared using bistrimethylsilylmethane (BTMSM) and oxygen mixed precursor by the chemical vapor deposition. The dielectric constant is measured by MIS(metal/insulator/Si) structure, but it could decrease the reliability because the uniformity is not assured. To research the dielectric constant of SiOC film, the range of low polarization was researched in SiOC film using the optical analysis and hardness, and then calculated the dielectric constant of SiOC film with amorphous structure of high degree. After annealing, the dielectric constant of SiOC film was decreased owing to the lowering of polarization, and FTIR spectra of the main bond was shifted to higher wave number. The main bond of 950~1200 cm-1 was composed of the Si-C and Si-O bonds. The intensity increases in Si-O bond infers the bonding strength became stronger than that of deposited film. Annealed SiOC film showed 2.06 in dielectric constant.

Development of magnetron sputtering system for Al thin film decomposition with high uniformity (고균일 Al 박막 증착을 위한 magnetron sputtering system 개발)

  • Lee, J.H.;Hwang, D.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.165-169
    • /
    • 2008
  • It is very important to decompose uniformly the metal film in semiconductor devices process. The thickness uniformity of the ITO film by standard magnetron sputtering system are about $\pm4%\sim\pm5%$ and the center of the wafer is more thick than the edge of the wafer. We designed and made the discharge electrode structure and controlled the direction of sputtering materials in magnetron sputtering system. The thickness uniformity are increased to $\pm0.8\sim1.3%$ in 4" wafer using the new sputtering gun in magnetron sputtering system. In wafer to wafer thickness uniformity, $\pm$5.3% are increased to $\pm$1.5% using the new sputtering gun. The thickness uniformity of the Al film are about $\pm$1.0% using the new sputtering gun in magnetron sputtering system.

Large deflection behavior and stability of slender bars under self weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney;Pamplona, Djenane
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.709-725
    • /
    • 2006
  • In this paper the buckling and post-buckling behavior of slender bars under self-weight are studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the non-linear analysis of uni-directional structural elements is presented, considering arbitrary load distribution and boundary conditions. From this formulation one obtains a set of first-order coupled nonlinear equations which, together with the boundary conditions at the bar ends, form a two-point boundary value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling. Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a high index of slenderness, its answers could be affected by the introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing the measurement of static or dynamic displacements without making contact with the structure, using digital image processing techniques. The proposed experimental procedure can be used to a wide class of problems involving large deflections and deformations. The experimental buckling and post-buckling behavior compared favorably with the theoretical and numerical results.

The Heat Treatment Effect of ZrO2 Buffer Layer on the Electrical Properties of Pt/SrBi2Ta2O9/ZrO2/Si Structure (ZrO2완충층의 후열처리 조건이 Pt/SrBi2Ta2O9/ZrO2/Si 구조의 전기적 특성에 미치는 영향)

  • 정우석;박철호;손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.52-61
    • /
    • 2003
  • $SrBi_2Ta_2O_9(SBT)$and$ZrO_2$thin films for MFIS structure(Metal-Ferroelectric-Insulator-Semiconductor) were deposited by RF magnetron sputtering method. In order to investigate the effect of heat treatment of insulator layers and MFIS structure, the insulator layers were heat treated from $550^{circ}C;to; 850^{\circ}C$in conventional furnace or RTA furnace under$O_2$and Ar ambient, respectively. After then, C-V characteristics and leakage current were measured. The capacitor with 20 nm thick $ZrO_2$layer treated at RTA$750^{circ}C;in;O_2$ atmosphere had the largest memory window. The C-V and leakage current characteristics of the$Pt/SBT(260nm)/ZrO_2(20nm)/Si$structure were better than those of$Pt/SBT(260nm)/Si$ structure. These results showed that$ZrO_2$films took a role of buffer layer effectively.

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

Degradation Mechanisms of Organic Light-emitting Devices with a Glass Cap (유리 덮개로 보호된 OLED소자의 발광특성 저하 연구)

  • Yang Yong Suk;Chu Hye Yong;Lee Jeong-Ik;Park Sang-He;Hwang Chi Sun;Chung Sung Mook;Do Lee-Mi;Kim Gi Heon
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.64-72
    • /
    • 2006
  • We demonstrated organic light-emitting devices (OLEDs) based on the organic thin-film materials such as tris-(8-hydroxyquinoline) aluminum $(Alq_3)$. The structure of OLEDs was vacuum deposited upon transparent and thin glass substrates pre-coated with a transparent, conducting indium tin oxide thin film. The luminance characteristics, current, capacitance, and dispersion factor for degraded OLEDs, which were made by various bias currents $(0.5mA\;{\leq}\;I_{Bias}\;{\leq}9mA)$, are studied. The current dependences of lifetime were divided at approximately 2mA, and they represented nearly linear behaviors but had different slopes in a logarithmic plot of lifetime versus bias current. With lighting OLEDs, the anomaly of capacitance, as shown in the CV curve, occurred because of two factors, polarization in the bulk of organic materials and the interface between the metal and organic layers. In decayed OLEDs that had lower bias currents of less than 2mA, it was found that the degradation of luminance was related to both the decrease of polarization and to the lowering of the injection barrier.

Ellipsometric study of Mn-doped $Bi_4Ti_3O_{12}$ thin films

  • Yoon, Jae-Jin;Ghong, Tae-Ho;Jung, Yong-Woo;Kim, Young-Dong;Seong, Tae-Geun;Kang, Lee-Seung;Nahm, Sahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.173-173
    • /
    • 2010
  • $Bi_4Ti_3O_{12}$ ($B_4T_3$) is a unique ferroelectric material that has a relatively high dielectric constant, high Curie temperature, high breakdown strength, and large spontaneous polarization. As a result this material has been widely studied for many applications, including nonvolatile ferroelectric random memories, microelectronic mechanical systems, and nonlinear-optical devices. Several reports have appeared on the use of Mn dopants to improve the electrical properties of $B_4T_3$ thin films. Mn ions have frequently been used for this purpose in thin films and multilayer capacitors in situations where intrinsic oxygen vacancies are the major defects. However, no systematic study of the optical properties of $B_4T_3$ films has appeared to date. Here, we report optical data for these films, determined by spectroscopic ellipsometry (SE). We also report the effects of thermal annealing and Mn doping on the optical properties. The SE data were analyzed using a multilayer model that is consistent with the original sample structure, specifically surface roughness/$B_4T_3$ film/Pt/Ti/$SiO_2$/c-Si). The data are well described by the Tauc-Lorentz dispersion function, which can therefore be used to model the optical properties of these materials. Parameters for reconstructing the dielectric functions of these films are also reported. The SE data show that thermal annealing crystallizes $B_4T_3$ films, as confirmed by the appearance of $B_4T_3$ peaks in X-ray diffraction patterns. The bandgap of $B_4T_3$ red-shifts with increasing Mn concentration. We interpret this as evidence of the existence deep levels generated by the Mn transition-metal d states. These results will be useful in a number of contexts, including more detailed studies of the optical properties of these materials for engineering high-speed devices.

  • PDF

Mixed rare earth $(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-d}$ thin films by PLD (PLD법에 의한 혼합된 희토류계$(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-x}$ 고온 초전도 박막)

  • Ko, Rock-Kil;Bae, Sung-Hwan;Jung, Myung-Jin;Jang, Se-Hoon;Song, Kyu-Jeong;Park, Chan;Sohn, Myung-Hwan;Kang, Suk-Ill;Oh, Sang-Soo;Ha, Dong-Woo;Ha, Hong-Soo;Kim, Ho-Sup;Kim, Young-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.3-3
    • /
    • 2009
  • In order to investigate the possibility of using mixed rare earth $(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-x}$ (NEG123) as the superconducting layer of the HTS coated conductor, the NEG123 thin film was deposited epitaxialy on LAO(100) single crystal and IBAD_YSZ metal templates by pulsed laser deposition. Systematic studies were carried out to investigate the influences of deposition parameters of PLD on the micro structure, texture and superconducting properties of NEG-123 coated conductor. Deposition at oxygen partial pressure of 600 mTorr was needed to routinely obtain high quality NEG123 films with $J_c$'s (77K) over 2 MA/$cm^2$ and Tc's over 90K (${\Delta}T{\sim}2\;K$). We verified from magnetization study that the NEG123 has an improved in-field Jc as the field increases at temperatures between 10 K and 77 K compared with Gd123. The $J_c$ (77K, self field) and the value of onset $T_c$ of NEG123 thin film on LAO substrate was $4.0MA/cm^2$ and 92K, respectively. This is the first report, to the best of our knowledge, of coated conductors with NEG123 film as the superconducting layer which have Ic and Jc over 40 A/cm-width and 1.6 MA/$cm^2$ at 77K, self field. This study shows the possibility of using NEG123 film as the superconducting layer of the HTS coated conductor which can be used in high magnetic field power electric devices.

  • PDF

Baseline-Free Crack Detection in Steel Structures using Lamb Waves and PZT Polarity (램파와 압전소자 극성을 사용한 강구조의 실시간 균열손상 감지기법 개발)

  • Sohn, Hoon;Kim, Seung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.79-91
    • /
    • 2006
  • A new methodology of guided wave based nondestructive testing (NDT) is developed to detect crack damage in civil infrastructures such as steel bridges without using prior baseline data. In conventional guided wave based techniques, damage is often identified by comparing the "current" data obtained from a potentially damaged condition of a structure with the "past" baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. To develop a more robust damage diagnosis technique, a new concept of NDT is conceived so that cracks can be detected without direct comparison with previously obtained baseline data. The proposed NDT technique utilizes the polarization characteristics of the piezoelectric wafers attached on the both sides of the thin metal structure. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves even at the presence of changing operational and environmental conditions. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to crack detection.

High-performance WSe2 field-effect transistors fabricated by hot pick-up transfer technique (핫픽업 전사기술을 이용한 고성능 WSe2 기반 전계효과 트랜지스터의 제작)

  • Kim, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.21 no.3
    • /
    • pp.107-112
    • /
    • 2020
  • Recently, the atomically thin transition-metal dichalcogenide (TMD) semiconductors have attracted much attention owing to their remarkable properties such as tunable bandgap with high carrier mobility, flexibility, transparency, etc. However, because these TMD materials have a significant drawback that they are easily degraded in an ambient environment, various attempts have been made to improve chemical stability. In this research article, I report a method to improve the air stability of WSe2 one of the TMD materials via surface passivation with an h-BN insulator, and its application to field-effect transistors (FETs). With a modified hot pick-up transfer technique, a vertical heterostructure of h-BN/WSe2 was successfully made, and then the structure was used to fabricate the top-gate bottom-contact FETs. The fabricated WSe2-based FET exhibited not only excellent air stability, but also high hole mobility of 150 ㎠/Vs at room temperature, on/off current ratios up to 3×106, and 192 mV/decade of subthreshold swing.